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rainer.boehme@uibk.ac.at

†Security and Privacy Laboratory
Universität Innsbruck
Technikerstraße 21A

6020 Innsbruck, Austria

Andrew Simpson‡
andrew.simpson@cs.ox.ac.uk

‡Department of Computer Science
University of Oxford

Wolfson Building, Parks Road
Oxford OX1 3QD, UK

Abstract—While the majority of security practice — and
spending — is focused on post-development products and
enterprise approaches, some have sought to change the focus of
security from the networks we manage to the systems we build.
The burgeoning Secure Software Engineering (SSE) commu-
nity has sought to identify and espouse activities, built upon
traditional software engineering, that address the introduction
of vulnerabilities as a means of stemming the growing tide
of security problems before they can be realised. It is widely
believed that not only do such approaches hold promise to limit
exposure and reduce security incidents, but they are also a valid
security investment that decreases overall security expenditure.
While many initiatives are now underway to codify such
SSE practices, a treatment of the economic considerations
has yet to be conducted. We propose an initial model that
captures SSE investment as a means of reducing defender
uncertainty regarding vulnerabilities, while raising the cost
to the attacker. This approach is instantiated as a companion
process to traditional security models, and we use the Iterated
Weakest Link (IWL) model of (post-deployment) security in-
vestment to demonstrate how defender security investment can
be optimised over the system’s lifecycle. The results indicate
both an increased return on security investment — the Return
on Secure Software Process (ROSSP) — as well as reduced
post-deployment costs. It is our hope that this model paves the
way for a more comprehensive treatment of security investment
that unifies pre- and post-security investment, leading to a more
comprehensive view of security in software systems.

1. Introduction

Computer security has become synonymous with secu-
rity products. As consumers, we install anti-virus solutions,
keep our applications patched and up to date, and ensure
the configuration of our firewalls and routers. Businesses
invest in a range of vendor products and services, often
creating a heterogeneous landscape of partial solutions. The
security industry itself can be characterised as a series of
‘next’ solutions, with security professionals trained on a
succession of security appliances. Security investment has

become a reactionary practice — optimising the expenditure
of resources to fix problems that are largely preventable,
leading some to characterise the current environment as the
“dark ages” of security thinking [1].

That is not to say that system-level, preventative ap-
proaches aren’t a necessary component to security. In prac-
tice, disparate systems must come together to form the en-
terprise, and no amount of planning can predict the emergent
security behaviours. However, exclusive focus on enterprise
security investment is an incomplete approach that fails to
reflect the sources of vulnerabilities [2] and the inherent
fallibility of discovery approaches [3]. Applications are in-
creasingly a “prime vector into an organisation” for someone
looking to bypass perimeter defences [4], leading to a grow-
ing conviction that the correct context in which to address
computer security failures is within development [5]. Yet
models for information security investment have not yet
caught up to this view, with a continued focus on post-
development optimisation of reactionary approaches.

In this paper, we introduce a model for security in-
vestment that incorporates the software development pro-
cess. Secure Software Engineering (SSE) codifies activities
widely seen as the best redress of vulnerability introduction,
but these have received little attention from the information
security investment community. Our model provides mecha-
nisms for practitioners to understand SSE investments across
a system’s life cycle, in order to maximise security gains.

Following an overview of relevant software engineering
and security investment concepts in Section 2, we define
the problem addressed by SSE investment modelling in
Section 3. Next, we provide an overview of the Iterated
Weakest Link (IWL) security investment model [6], serv-
ing as the basis upon which we form our initial model
instantiation. Our model for secure software engineering
investment, IWL-SSE, is presented in Section 4 along with
a discussion of the model’s operation. An analysis of the
broader implications is presented in Section 5, where we
introduce the metric of Return on Secure Software Process
(ROSSP) as a mechanism for comparative SSE decision-
making. We conclude with thoughts on future directions in
Section 6.
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2. Background

Of the many accepted security tenets, one commonly
cited during project planning is that “Security is a process,
not a product” [7]. Despite this, a treatment of the processes
involved in system development are often taken for granted
or ignored by the security investment community. Our model
is built on the premise that investment into security practices
during system development is critical to the production of
truly secure systems. This section provides the necessary
background to further develop the argument to support this
belief.

2.1. Software Engineering Process

Fundamental to system and software development is
the concept of a System Development Lifecycle, or SDLC.
While the term is often used generally — with ‘S’ some-
times meaning ‘Software’, rather than ’System’ — the US
National Institute for Standards and Technology (NIST)
sought to codify the concept within [8], specifying security
practices for five phases of a system’s lifetime: Initiation,
Development/Acquisition, Implementation/Assessment, Op-
erations/Maintenance, and Disposal. Many of the common
security concerns, such as accreditation to standards, con-
figuration management and patching, and perimeter security
pertain only to the Implementation/Assessment and Opera-
tions/Maintenance stages.

It is within the context of an SDLC that an organisa-
tion defines their software development process, potentially
spanning each phase but often concentrated in the Initiation
and Development/Acquisition phases. Such process models
are one of the most fundamental aspects of software de-
velopment, governing the inclusion, frequency, timing and
scope of development activities (requirements, architecture,
design, coding, testing, and release). Common variants of
software processes include the waterfall, evolutionary, it-
erative/incremental, spiral, prototyping, and agile models;
for a primer, we refer the reader to [9]. Consideration of
a process model requires taking into account organisational
and project constraints, which range from the consideration
of existing systems, scope of the project (standalone versus
part of a product line family), and the constitution of the
project team.

In addition to providing structure for the management
of software developments, software engineering has long
sought to quantify the economics behind software devel-
opment. It has long been known that investment deci-
sions made early in the software process are more cost-
effective [10], with empirical studies demonstrating the es-
calation of cost over the system’s lifetime (Table 1). Such
data is often the basis for investment decisions throughout
the development process; however, with few good metrics
for security such quantified approaches have yet to provide
the same insight into security investment.

Phase Software cost factors
Requirements 1×

Design 5× – 7×
Build 10× – 26×
Test 50× – 177×

Operations 100× – 1000×

TABLE 1: Software cost estimates for remediation in vari-
ous phases (from [11]).

2.2. Secure Software Engineering

While the practice of software engineering is generally
concerned with the development of quality software, the
burgeoning community of secure software engineering seeks
to augment specific process steps with security-oriented
exercises. To this end, it has been said that “preventing
the introduction of vulnerabilities prior to release, rather
than patching vulnerabilities afterwards is THE challenge
SSE rises to meet” [2]. This line of reasoning draws a
distinction between application security — largely focused
on securing software after it has been written, and more
closely related to the network-centric approach to security
— and software security, which seeks to “leverage good
software engineering practice and involve thinking about
security early in the software lifecycle” [12].

These practices are focused on the identification and
removal of flaws, or errors in design, and bugs, which are
errors in implementation [13]. Prevailing secure software
engineering wisdom is that vulnerability sources are 50%
the result of flaws, and 50% the result of bugs [14]. To
date, efforts in software security toward these ends can be
characterised as having two directions:

• Development processes, primarily focused on the use
of process and tools to reduce implementation er-
rors. Practices include OWASP CLASP1, Microsoft
SDL2, and Adobe SPLC3. The most broadly appli-
cable (and most cited) of these is perhaps the SSDL-
Touchpoints [5], which prescribes seven practices
that cover requirements to operations.

• Practice recommendations, aimed at addressing
common mistakes within a current development pro-
cess. These include prescriptive practices, such as
the IEEE CSD Top 10 Architectural Flaws [15]
and OWASP Top 10 [16], as well as broad meta-
models such as Building Security In Meta-Model
(BSIMM) [17] and OWASP OpenSAMM [18]
that seek to catalogue widely practiced activities.
BSIMM is a study of existing software security
initiatives within different organisations, which aims
to inform the wider software security community. It

1. Open Web Application Security Project Comprehensive, Lightweight
Application Security Process: www.owasp.org/index.php/Category:
OWASP CLASP Project

2. Microsoft Secure Development Lifecycle: www.microsoft.com/en-us/
sdl/

3. Adobe Secure Product Life Cycle: www.adobe.com/security/
proactive-efforts.html



is heralded as “a reflection of the current state of
Software Security” [17], identifying practices such
as abuse case and security-specific requirement def-
inition (at the requirements phase), risk analysis
(at the requirements, architecture and design, and
testing phases), risk-based security tests (at test plan-
ning), code review (at the code phase), penetration
testing (at testing and fielding), and security opera-
tions (following fielding).

These categories are not fully distinct; for instance, BSIMM
includes Touchpoints as one of the four recommended prac-
tice categories (along with governance, intelligence, and
deployment activities). In addition, they share a common
limitation; while prescriptive on the various steps to take,
little is specified as to the amount of effort to dedicate
towards these practices.

2.3. Information Security Investment

In the field of information security investment, models
tend to be focused on the enterprise level. These models
examine trade-offs between investments in products rather
than considering the processes associated with the develop-
ment and deployment of systems. Such focus limits security
investment trade-off considerations within a single phase of
the software’s life, ignoring its creation and post-deployment
existence. When the implications of security decisions fail
to consider the software lifecycle, risks are ignored, options
are limited, and the resulting systems having enlarged attack
surfaces and inherent complexity at their interfaces [19].

Our model is best placed in context with other models
that establish optimal security investment in various con-
texts, using tools such as multi-objective optimisation and
game-theoretic relationships; a review of such models can
be found in [20]. Theoretical underpinnings of such invest-
ment models are traceable to [21]. Example game-theoretic
models include those presented in [22], [23] and [24].
Issues with the application of investment metrics to security
investment are discussed in [25] and [26]. Recent game-
theoretic models that seek to examine these trade-offs, such
as those in [27], present a natural intersection between the
development-level aspects of our model and the higher-level
systems security thinking required for enterprise-level con-
sideration. Others have sought to push such considerations
to earlier in the process by defining mechanisms that can
best be characterised as being pre-deployment, system-level
processes. Concepts such as the Security Attribute Evalua-
tion Method (SAEM) [28] and the Appropriate and Effective
Guidance for Information Security (AEGIS) [29] consider
system security at the system level, but still as a post-
development step. Generally risk-based, these methods rely
on the existence of system artefacts (designs, components,
etc.) to focus asset-based decisions — largely in the absence
of cost considerations.

The challenge of combining considerations of scope,
cost and timing has proven a limitation in the research to
date regarding security investment models, and is indicative

of the broader lack of a comprehensive treatment of security
investment spanning the life of a software-based system.
We argue that it is essential to provide project managers
with appropriate tools to make rational decisions regarding
their investment into secure software process elements. The
motivation for this paper is the development of tools that
combine elements of software engineering, secure software
process, and information security economics to provide us-
able tools to this end.

3. Problem Statement

Between current practice and the ideal promised by SSE,
a logical question arises: Is there an allocation of project
resources that provides a more efficient outcome?

3.1. Software Process Investment

The security investment of a software system can be
characterised as a series of decisions spread over the SDLC
phases, starting with Inception and ending with the system’s
Disposal. We can then conceive of a system as having a fixed
budget B, with some allocation of B dedicated to security
at any point in time t (denoted Bs). Projecting this into a
Cartesian space, we find that Bs may take on a variety of
forms; Figures 1a – 1d present conceptualisations of how
such security investment might occur.

Figure 1a presents what might arguably be considered
the current state: a very low security investment effort
over the early stages of the process, quickly increasing to
consume an ever-increasing share of the project costs. In
addition to questions of efficiency in such an investment
approach, such a profile allocates resources to security to
the potential detriment of other investment opportunities
(e.g. new functionality, or code maintenance) in later phases.
Figure 1b, while more controlled, might not depict a more
favourable allocation, as it would imply that security invest-
ment in any given phase is equally beneficial. Many might
consider Figure 1c to be the most likely scenario to result
in effective investment, with security investment ramping
up as the security concerns — and system artefacts —
become more tangible. However, the SSE community might
argue that an investment profile such as that illustrated by
Figure 1d is the most appropriate. This reflects a belief that
up-front investment is the most effective means to achieving
security, reducing the need for later investment into activities
such as accreditation, patching, and breach remediation. The
question of which of these depictions, if any, reflects a more
efficient reality is the focus of this research.

3.2. Assumptions and Constraints

Our consideration of the problem space is focused on
the application of SSE principles to a specific development
environment, modelled on software engineering process con-
siderations and followed by a weakest-link model of attacker
progression. We seek to address the investment into SSE
within the following context.



(a) Notional depiction showing the bulk of security investment
occurring late in the lifecycle (e.g. post-deployment).

(b) Notional depiction of a constant security budget Bs as a
fixed proportion of the per-phase budget B (here, as 20%)
over the course of a project.

(c) Notional depiction of security investment that starts early
in the lifecycle and slowly increases.

(d) Notional depiction of security investment at the early
stages, leading to reduced investment in later phases.

Figure 1: Depictions of security investment over the System Development Lifecycle (SDLC)

1) We assume standalone, greenfield development,
where all security investment decisions are left to
the programme manager, and the implications are
confined to the individual system. This removes
any concern over interfaces, integration, or existing
frameworks altering investment decisions.

2) We assume a sequential development lifecycle with
distinguishable phases, where the development pro-
cess is well-defined, controlled, and guided by
a programme manager. This is easily thought of
as a waterfall or incremental model, with defined
Architecture/Design and Code/Test phases. While
only two phases are considered here, extension
to broader aspects of the software process is dis-
cussed in Section 6. In addition to simplifying the
model, there is evidence that such models remain a
dominant approach in many development environ-
ments [30], [31].

3) We assume that the developer is involved in the
fielding and operation of the development, or that
this information is reliably and truthfully conveyed.
The conveyance of information is directly related
to the uncertainty in the process artefacts upon
which security decisions are based, and is a key
element to our model. This is perhaps one of the
most straightforward software engineering contexts
to conceive, yet still would not be uncommon in
practice. By employing such a context, we seek
to define our model in the broadest sense, while
making it recognisable and easy to adopt and adapt
by practitioners.

4) We assume that: once a flaw or bug is found, it
is fixed; the fix enacted is correct; and repeated
iterations of SSE activities occur with the same
effectiveness each time. While there are indications
that this is often not the case [32], the impact of



such process complexities and secondary effects are
left to future investigation.

We focus on the practices within the SDDL-Touchpoints
domain of the BSIMM: Architecture Analysis (AA), Code
Review (CR), and Security Testing (ST). Each of these
activities has long been a part of established software de-
velopment practice, with SDDL-Touchpoints and BSIMM
supplying a security focus that augments common practice.
However, little to no guidance is provided as to the mag-
nitude of resource investment that leads to the successful
completion of any of these steps, or as a collective.

4. Model

In order to appraise the development of secure systems
in their entirety, we examine how the SSE process can be
represented within the general class of information security
economic models. The goal of this work is not to ignore
or replace the existing class of models, whose structure
and assumptions capture vital aspects of various security
scenarios, but rather to augment their construction. For this
initial examination, we have chosen to utilise the Iterated
Weakest Link (IWL) model [6] as the modelling construct
we will expand through the addition of SSE considerations.
IWL supplies a number of features that make it an ideal
candidate for such supplementing constructs, as it focuses
on optimisation of defender decisions based on starting con-
ditions that lie at the heart of software engineering: quality
(in the form of cost to attacker) and uncertainty regarding
vulnerabilities. SSE practices exhibit indications of weakest
link behaviour as well, as reflected in the motivation for the
IWL: “The most careless programmer in a software firm can
introduce a critical vulnerability” [6]. Common practices
such as ‘top 10 list’–driven reviews and the use of code
analysis tools and rulesets evolve with the realisation of
‘yesterday’s attack’; they are intended to place focus on the
most common errors, with increasingly deeper review and
analysis driving both security and cost.

A review of the IWL is now presented in order to
establish the conditions required for our model of SSE
investment.

4.1. Overview of the Iterated Weakest Link Model

Central to the IWL is the premise that attacks are
“unknowable and hence innumerable in advance” [33]. This
leads to the definition of a model that emphasises dynamic,
adaptive investments over time. The authors attempt to
capture the iterative nature of security investment through a
focus on the following three key characteristics.

• Defender uncertainty regarding which components
are weakest is a key consideration in investment
decisions.

• Defence plays out as an iterative process of attacking
and defending successive weakest links.

• Countermeasures can be represented as interdepen-
dent (rendering the diminishing marginal return of

(a) Attack profile with cer-
tainty (σ = 0).

(b) Attack profile with uncer-
tainty (σ > 0).

Figure 2: Attack profile under certainty (left) and uncertainty
(right).

information security investment endogenous in this
model).

The model demonstrates conditions where under-investment
in security can be a rational action, given that: a) reactive
investment is possible; b) uncertainty exists about the at-
tacker’s relative capability to exploit different threats; c)
successful attacks are not catastrophic; and d) the sunk cost
to upgrade the defence configuration is relatively small [6].
This model is applied to phishing in online crime and pay-
ment card security, with subsequent papers [33] examining
the use of penetration testing as a means to conduct such
uncertainty reduction.

The IWL seeks to model the protection of a set of assets
a, from which a return of r per-period is enjoyed by the
defender. This is jeopardised by n possible components
threatened by attack (e.g. attack vectors), each with an
associated cost of attack. In IWL, each successive threat
(1, . . . , n) has an increase in cost of ∆x over the previous
threat, forming an attack gradient. In the original IWL, this
was set at ∆x = 1, specifying that each defender investment
increased the cost to the attacker linearly.

While the true ordering of n is presumed to be known by
the attacker (x), this information is unknown to the defender
who must form an expected ordering of likely threats (e.g.
through attack modelling as specified in BSIMM’s Intelli-
gence domain [17]). The defender’s ordering is denoted x
(where x1 ≤ xi ≤ xn). If the defender’s attack modelling is
perfect, they will generate an attack profile that matches the
attacker’s profile; this is the case depicted in Figure 2a. In
this instance we can say the defender (dots) has absolute
certainty regarding the attacks (rings). However, a much
more likely scenario is one where the defender’s estimate
does not fully align with the attacker’s profile, leading to an
incorrect ordering. Such a case is illustrated in Figure 2b,
where defender uncertainty leads to an incorrect ordering
(i.e. threats 3 and 4), resulting in misplaced investment by
the defender. This potential for a misalignment of threats
and defences by the defender is captured by the IWL as σ,
specifying the degree of the defender’s uncertainty.

Defender investment in IWL plays out over discrete time
t = (1, . . . , tmax). At each t, the defender forms a defensive
configuration represented by a vector dt. The elements di
of dt ∈ {0, 1}n indicate that defence against the i-th threat



(a) Defender attack ordering
with high uncertainty, poten-
tially leading to incorrect or-
dering of attack vectors.

(b) Defender attack ordering
with low uncertainty, reducing
the potential for incorrect at-
tack vector ordering.

Figure 3: The relationship between uncertainty σ and attack
gradient ∆x in the establishment of defender attack order.

is implemented (di = 1) or not (di = 0). The summation of
these defences is represented by k, guarded at a unit cost
(1) per protection, per round.

The knowledge employed by the defender to make in-
vestment decisions follows [6], with the expected costs for
the i-th threat represented as:

x̄i = x̄1 + (i− 1) ·∆x

with
∆x > 0 (1)

The unknown true costs are modelled as a Gaussian random
variable N , with mean xi and standard deviation σ/∆x
(censored to values xi > 0):

xi = sup(0, χi)

with
χi ∼ N (x̄i, σ/∆x) (2)

The role of σ in the IWL is visualised in Figure 3: a higher
value of σ leads to a wider distribution, increasing the proba-
bility that the defender’s ordering is incorrect and results in
misplaced security investment (Figure 3a). However, with
lower uncertainty (i.e. a smaller standard deviation) this
probability is decreased (Figure 3b).

The value of the attack gradient (∆x) also contributes
to the overall security investment decision: the larger ∆x,
the less overlap in expected threat costs for a given σ.
This is depicted in Figures 2 and 3 as the slope of the
line on which the actual attack costs lie relative to the
distribution of defender expectations. Therefore, the effect of
these parameters on the security investment is best thought
of as a ratio, σ/∆x (representing an increase in attacker cost
for a given amount of uncertainty). We make this distinction
as an extension of the exposition in [6], as the original IWL
employed a unit cost for ∆x rendering this distinction moot
(σ/∆x = σ/1 = σ).

The model operation starts with the defender speci-
fying an initial k at t = 0. In each subsequent round
(t = 1, . . . , tmax) the attacker may choose to exploit the
component with the least true cost not covered by dt, looting
a fraction z from asset a — but only if the benefits exceed
the cost to attack. In the face of uncertainty (σ) regarding

the economic viability of the attacker exploiting the next
weakest link, the defender may carry out the following
actions.

• Ignore the attack and absorb the potential losses.
The model does not consider public costs, so such
a private loss can be seen as rational when the loss
is less than the security investment demands.

• Disinvest from the enterprise, which occurs when
the defender’s position becomes non-viable due to
costs and uncertainty.

• Specify a new defensive configuration (dt) as each
part of the true ordering is revealed by the weakest
link.

The process then repeats at each step with the attacker
decision. A secure state is reached when the remaining
vectors below the reservation cost of attack are protected.

In addition, the IWL includes an aspect not yet con-
sidered by our model, but worthy of note: the sunk cost
of defence (λ) that is incurred when the defender chooses
to change the defensive configuration dt in a given round.
While omitted for simplicity of our exposition, our rep-
resentation of SSE process investment is not dissimilar to
this aspect of the IWL at the point of deployment, and its
inclusion post-deployment in the proposed model is left for
future work.

Our model is concerned with the genesis of the vulner-
ability set addressed by models such as IWL, as well as
the defender’s uncertainty regarding this set. This is accom-
plished through the application of SSE processes, reducing
the defender’s σ while raising the initial security condition
of the software itself (represented by the attack gradient,
∆x). We consider the cost and value of flaw and bug identifi-
cation prior to system integration and deployment, i.e. within
the Acquisition / Development phase of the SDLC. In order
to do so, we complement the IWL with a model of SSE
as a defender action that removes potential vulnerabilities
at a greatly discounted rate (in comparison to the costs
involved at later stages). Drawing from empirical software
engineering, we ask how such costs can be minimised over
the entirety of the system’s lifecycle.

4.2. Modelling Secure Software Engineering

Consider a software project managed by a system de-
veloper, whose goal is the most efficient investment of a
security budget. Each unit of potential investment can be
seen as providing two benefits. The first is a reduction
in economically viable vulnerabilities — vulnerabilities for
which the attacker sees a return on their investment of
resources. This is accomplished either through remediation
(e.g. deployment of a defence) or removal (e.g. a correction
in implementation) of expected vulnerabilities, and is gener-
ally driven by a risk-based attacker model (such as in SDDL-
Touchpoints [5]). The second is a reduction in uncertainty
regarding the identification and ordering of vulnerabilities,
under the assumption that security expertise is more adept at
the former than at the latter [6]. Under the IWL model the



Figure 4: Investment in SSE is defined by the number
of economically viable vulnerabilities (vulnerabilities for
which an adversary attack results in a return after their
costs), as defined by gradient of increasing attack costs (∆x)
and the uncertainty regarding the nature of the vulnerabil-
ities present (σ). The goal of secure software development
investment is in the movement toward the lower right of
the graph; that is, fewer economically viable vulnerabilities
with less uncertainty.

attacker is always concentrated on the economically most
viable vulnerability, requiring that a determination on the
extent and relative weakness of vulnerabilities is known
with as little uncertainty as possible in order to properly
place defensive resources. As discussed in Section 4.1 this
uncertainty is tightly coupled to the cost of successive
attacks, such that we must consider it relative to the attack
varying gradient ∆x (σ/∆x).

Within the trade-space depicted in Figure 4, we identify
four differentiating points, specified on the graph by posi-
tions 1 to 4:

1) The situation where a number of viable vulnera-
bilities are present, and the system developer has
a great deal of uncertainty regarding the exposure
resulting from these vulnerabilities (low ∆x, high
σ). This point arguably represents the most likely
result of a modern software development effort that
lacks investment into SSE processes.

2) The situation in which the system contains a num-
ber of economically viable vulnerabilities, with the
system developer well aware of their existence,
relative exposure, and rank order (low ∆x, low σ).
This corresponds to some combination of inade-
quate process and a lack of effectiveness in any
process undertaken; in the worst case this is the
‘snake-oil salesman’ of commercial software.

3) The situation where there are few economically
viable vulnerabilities, but this fact is not known
to the system developer with any certainty (high
∆x, high σ). Such a point could be a very ‘lucky’

Figure 5: High level depiction of the overall integrated
process, with the introduction of additional process invest-
ment steps (t = −2,−1) that complement the system-level
security investment (t = 1, . . . , tmax). This is anchored by
the deployment point (t = 0), whereby the values set by the
software process are fed into the system level model (in this
paper, the IWL).

development result, or perhaps a very good process
leading to ‘hardened’ software (i.e. a high actual
initial attack cost x1) with no means to measure
the result (e.g. no process artefacts, a lack of met-
rics). In either case, this state is likely to result in
security over-investment, as the system developer
seeks assurance that the resulting system is secure.

4) The ideal situation where there are few (if any)
economically viable vulnerabilities in the system,
and there is absolute certainty regarding this fact
(high ∆x, low σ). This can be considered the goal
of secure software engineering investment.

This depiction is useful in conceptualising relevant secu-
rity outcomes to result from investment in the software
process. The secure software engineering process offers an
investment opportunity for the defender on both counts,
with processes such as architectural and design reviews,
code reviews, static and dynamic code analysis, and risk-
driven testing. As such, it is complementary to the current
secure software engineering literature that places a heavy
emphasis on vulnerability reduction when considering return
on security investment. While this is an essential result of
a secure software process, the complementary benefit —
uncertainty reduction and raising the bar to attack — is just
as vital to warding off security over-investment.

4.2.1. Defender Investment. Our software process model
unfolds in discrete time, using negative time slices to denote
pre-IWL steps for consistency of representation. A high-
level depiction of the overall process is shown in Figure 5.

Investment by the defender proceeds according to two
phases: Architecture and Design (t = −2, denoted AD),
and Implementation and Test (t = −1, denoted IT). This
investment occurs through the choice of the number of
review or test iterations (i), which succeed with a probability
α (finding a flaw via review) or β (finding a bug or flaw
via test), respectively. Therefore, the overall investment by
phase is defined as

I{AD,IT} = (i · c) + i · (eff · e)



where
i ∈ {iAD, iIT}
c ∈ {cAD, cIT}

eff ∈ {α, β}
(3)

Here, I represents the cost of the secure software en-
gineering activity conducted at time t for a given set of
iterations within that activity, i. The value eff is the effec-
tiveness of the SSE activity; in this case, α for reviews and
β for tests. In this context, ‘effectiveness’ refers generally
to the benefit derived from execution of the process. This
is related, but not equivalent, to the effectiveness of a
particular tool or activity (e.g. static analysis software or
formal specification reviews) and cost c invested. Finally, e
is the cost of conducting the identified fixes; for this model,
it is assumed that all identified flaws or bugs are fixed. This
parameter deserves further explanation, as it varies between
phases.

The field of software engineering has long been con-
cerned with the costs of fixes in different phase; Table 1
cites the findings of a survey on the topic by NASA [11].
Such surveys, along with work by those such as Boehm [10],
[34], have empirically shown that costs escalate by roughly
a factor of 10 with each phase of development as the project
moves from requirements, to architecture and design, to
implementation, and finally to operations. We reflect this by
setting the in-phase cost of a fix as 0.01 (one one-hundredth
of the cost of fixing a flaw in operations), consistent with the
software engineering literature and the IWL unit definition
for cost of defence. We exact an order of magnitude increase
in each future phase for the cost of flaws (cf ) and bugs (cb),
starting from the phase they are introduced — at t = −2 for
flaws, and t = −1 for bugs. Using the rule of thumb that
vulnerabilities are 50% flaws and 50% bugs, investment in
previous process phases is rewarded by a reduction in the
proportion of higher cost fixes to in-phase fixes within the
current phase. This reduction should be related to the num-
ber of iterations undertaken in the previous round, creating
an incentive for early security investment reflecting current
SSE thinking towards such early investment [12], [35].
This function should therefore exhibit convex behaviour,
reflecting a decreasing return on security investment that
is asymptotic at zero — under the assumption that both
categories of error will never be fully removed. Our resulting
definition for e in each phase is then:

t = −2 : efAD = 0.01
t = −1 : efIT

2αiAD
+ ebIT = 0.1

2αiAD
+ 0.01

(4)

Combining equations 3 and 4 yields the following def-
initions for cost at Architecture and Design (t = −2, AD)
and Implementation and Test (t = −1, IT):

t = −2 : IAD = (iAD · cAD) + iAD · (α · efAD)
t = −1 : IIT = (iIT · cIT) + iIT ·

(
β ·
[

efIT
2αiAD

+ ebIT
])
(5)

Here, cAD and cIT represent the cost of conducting a
review or test, respectively. The overall cost for the software

process IP is then simply the linear combination of the phase
costs:

IP = IAD + IIT (6)

4.2.2. Defender Payoff. The benefits to the defender that
spurn investment into these secure software engineering
stages is twofold. The first benefit is the reduction in the
overall uncertainty faced by the defender, relative to the
overall amount invested in the respective phases.

We define the overall uncertainty σ as the equal com-
bination of the uncertainty accumulated by each phase of
the software process. This can be interpreted as an equal
amount of uncertainty regarding both bugs and flaws, with
equal weight given to each:

σ = σAD + σIT (7)

To determine the uncertainty reduction provided by the
process elements per phase, we seek a model that correlates
the number of iterations with the effectiveness per itera-
tion. This should reflect a reduction in uncertainty that is
exponentially decreasing asymptotically to 0 (just as one
will never reach full certainty in practice, one will never
reach fully defect-free software). Additionally, neglecting to
undertake any process elements within a given phase should
not result in any uncertainty reduction. We have chosen to
model this as follows:

σt =
σmax

2
· eff

1
i

with

eff ∈ {α, β}
i ∈ {iAD, iIT}
t ∈ {AD, IT}

(8)

Here, σmax refers to the starting level of uncertainty,
while eff and i correspond to the values relative to phases
t = (−2,−1) for the effectiveness and iteration counts,
respectively.

The other payoff is in the increase of the gradient of at-
tack, ∆x. This can be expected to increase with diminishing
returns, pursuant to the prevailing wisdom of the information
security economics literature [36], [37]. We therefore seek
a model that exhibits sub-linear growth and concavity, and
also that reflects the unit definition for defensive costs when
no investment into process is made (essentially reducing
to the IWL definition). We have chosen to model this as
follows:

∆x =
√

(1 + αiAD + βiIT) (9)

We refer to this overall, combined model as the IWL-
SSE for convenience. For the sake of clarity, this refers to
the combination of two complementary models rather than
a strict extension of the IWL.
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Figure 6: Example inputs applied to the IWL parameter space, demonstrating the outcome of various SSE model choices.

4.3. Model Consistency

As a first step in the evaluation of this model, we return
to Figure 6 and ask if this construction faithfully represents
the IWL input space. The controlling factors for the model
are as follows.

1) The number of iterations the model is run at each
process step (review and design), as an independent
variable to be chosen by the system owner.

2) The effectiveness of each iteration, represented in
the model by α and β. While also independent
variables, we can look to the software engineering
literature to provide reasonable estimates for these
values in the absence of a particular application
scenario or hard data regarding a specific SSE pro-
cess. However, this is a simplification that requires
further investigation, as the relationship between
the effectiveness of software process activities (in
their varied forms and structures) and the effec-
tiveness of flaw and bug removal in the address
of vulnerabilities is complex. In our employment
of empirical software engineering, we make the
simplifying assumption that the discovered flaws
and bugs are intrinsically security-related, and the
effectiveness of software engineering practices for
their discovery are commensurate with that of ‘gen-
eral’ bug and flaw discovery and remediation.

Recalling the discussion in Section 4.2, we seek to
examine the coherence of our model with SSE investment.
Figure 6 depicts combinations of input parameters to IWL-
SSE under the assumption that, without any SSE process,
the system developer starts with a high degree of uncertainty

regarding vulnerabilities (σ) and a low attack gradient (∆x).
Solid lines on the graph represent the minimum attack
gradient ∆x = 1 (i.e. the increase in attack costs without any
process investment), and the asymptotic point of absolute
certainty, σ = 0. The initial uncertainty has been set to
σ = 16, consistent with the parameterisation in [6].

Comparing Figure 4 and Figure 6, we find the following
relationships with IWL-SSE.

1) Point 1 is the result of a failure in the investment
of process, either through a lack of iterations (low
iAD and/or iIT), or through a lack of effectiveness
in the process (α and β at or near 0%). Coupled
with a high cost of review or test, this becomes
the worst-case scenario of investment for no gain
in protection or understanding (2 iterations, 0.01%
effective).

2) Point 2 is occupied by two scenarios: few iterations
with high effectiveness (2 iterations, 99.99% ef-
fective) and many iterations with low effectiveness
(10 iterations, 0.001% effective). These points both
demonstrate an undesirable (but not catastrophic)
state, and demonstrate the concavity provided by
the functional form. This is intended to reflect the
decreasing returns from investment.

3) Point 3 is approached through continued investment
in the software engineering process, coupled with
reasonable effectiveness (driving down σ, while
driving up ∆x): the lower the effectiveness, the
more iterations required to reach this state. In-
vestment into more effective measures, predictably,
results in the need for fewer iterations to reach the
same return (10 iterations, 99.99% effective).



4) Point 4 represents an area defined by the expected
minimum cost of attack, ∆x. Conceptually, this
space represents the lucky situation where the de-
fender has a high attack gradient (i.e. there are few
economically viable attacks), yet there is a high
degree of uncertainty in this. Therefore, this value
is driven by the initial ∆x — as this line shifts
right, the starting point for attack is increased and
the points at (1) and (2) shift to the right. While
we retain the unit definition employed by the IWL,
future work could provide a stronger link with
the role secure software process has in setting the
‘hardness’ of a software system against attack.

5) The final point (4 iterations each, both 35% effec-
tive) is intended to show a ‘realistic’ set of param-
eters, indicative of common development practice.

This particular form provides the general functional form
desired by this model: modest return in process quickly
provides returns with respect to reducing the uncertainty of
the software’s state, with diminishing returns — especially
at low rates of effectiveness. It also reflects the need for
significant, repeated investment in order to drive up the
base level of economically viable attacks. While the general
form fits for the purpose of exploration in this space, we
leave more expressive modelling of the relationship between
uncertainty and attack costs to future work.

This analysis alone fails to consider the overall return;
as with post-development security, the potential for over-
investment in process security exists and must be managed.
Thus, we must analyse not only the overall return but also
the balance of this investment between the process and
operational phases. Therefore, we now turn our attention
to the role of SSE investment in conjunction with post-
development security investment using the IWL in order to
examine optimal security investment strategies spanning the
broader SDLC.

5. Results

We now examine the benefit of secure software engi-
neering investment on the overall SDLC, with focus on the
optimal distribution of security investment into the various
phases — pre- and post-deployment.

5.1. Return on Security Investment (ROSI)

The solution to the original IWL is analysed in light of
a specific form of Return on Security Investment (ROSI),
which is defined in terms of the Annual Loss Expectancy
(ALE) [38]:

ROSI =
ALE0 − ALE1 − average security investment

average security investment
(10)

where [39]:

ALE = Expected rate of loss× Value of loss (11)

Here, ALE0 is the ALE without security investment,
while ALE1 represents the (expectedly lower) ALE with
security investment. This construction permits those making
security investments a straightforward comparison between
potential solutions in order to find the optimal investment
strategy for a given set of initial conditions. While disagree-
ment exists regarding the validity of annualised security
benefit metrics, ROSI (and associated metrics) has emerged
as a means for evaluating and justifying security expenses
within an organisation [38]. Such metrics have the benefit
of wide acceptance among managers and accountants, per-
mitting security engineers and project owners to present a
case for security expenditure in a non-technical, business-
accessible fashion.

Applying ROSI to the IWL-SSE provides insight into
the benefits that secure software process provides over the
course of the SDLC, from development through deployment
to operations. Figure 7 provides an ROSI comparison for a
variety of parameters using the same overall scenario as
that presented in [6] (a = 1000, r = 5%, z = 2.5%, x1 =
15, n = tmax = 25). For the SSE scenarios a starting σ = 16
was employed (the maximum used in IWL), along with
a starting ∆x = 1 (which is fixed in IWL). We employ
effectiveness values of α = 60% and β = 30% to corre-
spond to reported effectiveness of architectural reviews [34]
and singular static analysis tools [40]. However, as noted
in Section 4.3, the relationship between the effectiveness of
the SSE activity represented by the model and the measures
of effectiveness reported in the literature for specific prac-
tices is complex; these values merely provide a reasonable
starting point for analysis of the model’s operation.

This figure illustrates the dual benefits of SSE within
security investment situations when compared to the IWL
alone. For this particular hypothetical scenario:

• The overall return has increased in all instances em-
ploying secure software process. This indicates that
the investment in reducing vulnerabilities through
investment in the software process has resulted in
a more favourable position for the defender, who is
able to retain a greater portion of the value of the
asset (a).

• The optimal number of proactive post-deployment
defences has decreased in all instances employ-
ing secure software process. This would imply that
investment into SSE process reduces the burden
on proactive post-deployment defence. Such a re-
sult undoubtedly contributes to the increased return
demonstrated, as the one-time costs borne prior to
deployment do not impart recurring costs.

These effects are attributable to the removal of ‘weaker
links’ prior to deployment, which has increased the value
of ∆x. An important outcome is in the reduction, rather
than the removal, of proactive post-deployment defences
(from k = 11 in the optimal case of IWL under complete
certainty, to k = 3 in the case of IWL-SSE with 8 reviews
and 24 tests). Additionally, Figure 7 also highlights bounds
on the return that SSE can provide, with the optimal point
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Figure 7: The Return on Security Investment (ROSI) for a variety of dynamic IWL-SSE scenarios.

(for this given set of parameters) falling below the max-
imum number of reviews and tests. This would indicate a
‘diminishing returns’ scenario that requires well-constructed
process investments, rather than perpetual and unbounded
expenditure. Both of these findings coincide with accepted
security thinking regarding the role of SSE, and further
reinforces the lack of a ‘silver bullet’ in information security
necessitating broad and balanced approaches [12].

5.2. Return on Secure Software Process (ROSSP)

The acceptance that ROSI has experienced has led to
adaptations intended to describe a number of specific secu-
rity investments, notably the Return on Penetration Testing
(ROPT) metric employed in [33]. We follow this convention
by defining our own metric: the Return on Secure Software
Process (ROSSP). Formally, we define this as:

ROSSP = ROSISSE − ROSINoSSE (12)

Here, ROSISSE represents the return realised after SSE
investment, while ROSINoSSE is the return without SSE
investment. These calculations are performed according to
the ROSI equation of Section 5.1. Although defined in a
binary fashion by convention, this calculation is equally
valid as a comparison of security investment levels (e.g.,
when varying the number of review or analysis iterations).
This can be thought of as the ROSI of a potential state that

includes secure software process against an alternative state,
with the case of ‘No SSE’ (zero iterations of each phase)
serving as a special case.

Figure 8 presents a ROSSP comparison between the
previous best-case scenario (σ = 0) and SSE process sce-
narios, with all other values held the same as per Figure 7.
Under this hypothetical scenario, at the optimal point of
investment the ROSSP calculation between the IWL (with
absolute certainty) and the IWL-SSE model is:

ROSSP = 44.6− 33.5 = 11.1

Graphical results for ROSI and ROSSP across a variety
of parameters are depicted in Figure 7 and Figure 8, with
numeric results presented in Table 2.

Proper use of such calculations can aid the project owner
in evaluating alternative development approaches, and in jus-
tifying the process investment required for secure software
engineering. It is clear from this example that, while the
ROSSP indicates a significant return (for this specific set of
parameters), it does not constitute a ‘free pass’ for ‘software
security at all costs’. The diminishing ROSSP of the 25 re-
view and 25 test values (asterisk line in Figure 8) show that,
like any other security investment, software security must
be weighed against resource commitment. While specific
maxima will vary based on the costs and effectiveness of
particular SSE approaches, undoubtedly the benefits wane
as it becomes harder — and therefore most costly — to
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address the next weakest link through process alone. Where
BSIMM and others have sought to identify what must occur
to improve software security, our contribution is the first to
attempt to address how much is reasonable. The answer to
both these questions is crucial if such practices are to be
adopted and rise to the importance their advocates feel is
necessary to exact real change in security.

This model, and the associated ROSSP measure, is in-
herently conservative in that it assumes a single system de-
ployment. In situations where the same software is to be de-
ployed across multiple instances, the SSE investment would
exhibit enormous economies of scale. A further examination
of such a construction is left to future work, as it requires the
consideration of parameter constellations that result in de-
fence investment shifting toward post-deployment defence,
where costs are borne at each deployment. A refined ver-
sion of ROSSP and the associated analysis would consider
expectations over the number of deployments.

Ultimately, the success of such metrics and models are as
guiding forces, informing software development programme
stakeholders and enabling rational decision-making based
upon sound reasoning and explicit assumptions. It is our
hope that this work opens up new lines of investigation
that explicitly consider the software development process
as part of the security investment, leading to richer and

Reviews Tests ROSI ROSSP k
(IWL, σ = 0)

None, σ = 0 33.5 – 11
None, σ = 16 25.1 -8.4 0

1 1 34.5 1.0 5
5 1 40.6 7.1 4
1 5 39.4 5.9 4
8 24 44.6 11.1 3
25 25 42.6 9.1 3

TABLE 2: ROSI and ROSSP for various configurations of
secure software engineering (α = 60%, β = 30%, cAD = 3,
cIT = 1)

more descriptive models that lead practitioners toward more
efficient and robust security approaches.

6. Conclusion

We have presented a model to address investment into
secure software engineering processes within a software
development project. Designed to represent system devel-
opment lifecycle security considerations, our model is con-
sistent with contemporary SSE practices such as architecture
and design reviews, code analysis (static or dynamic), and
security testing. While we have simplified these activities
into two general process steps, extension to additional,



detailed process steps is a straightforward extension to the
construction presented.

There are a number of avenues to further develop and
expand the concept, bridging the fields of software engineer-
ing, software security and security economics. More expres-
sive software engineering models would allow the concept to
be applied to a wider range of software processes, to include
modern lightweight processes. In addition, the issue raised
in Section 4.3 regarding SSE activity effectiveness deserves
further study, and is tightly coupled to the assumption of
fix correctness cited in Section 3.2. While we account for
post-introduction phase costs, research such as that detailed
in [34] points to richer compositions of error type, discovery
stage, vulnerability source, cost variability and effectiveness
both pre- and post-deployment.

Extensions could consider additional sources of vulner-
ability, such those resulting from misconfigurations. Vulner-
abilities of this type are typically post-development issues,
addressable by activities such as penetration testing (‘pen-
testing’). A version of IWL-SSE that investigates the em-
ployment of pen-testing [33] provides an obvious extension
point, as does incorporation of data from practices such as
attack modelling and risk-based analysis into the model. A
related point is the assumption that bugs and flaws correlate
directly to singular vulnerabilities, when in fact this rela-
tionship is likely more complex [41].

The form of the model and the underlying assumptions
characterise a security-conscious, internal development envi-
ronment with a focus on the direct costs to the organisation.
Commercial development (i.e. development of software for
sale or as a service) introduces a need to consider pro-
cess investment against the benefits of time-to-market when
software patching is an option. Future work could employ
models such as [42] that capture quality considerations
under a ‘ship and fix’ mentality, and examine the impact
of security considerations.

As previously stated, the choice of the IWL as the
enterprise model was driven by the model input form; how-
ever, other models offer constructs for which SSE process
modelling would prove a viable and enriching extension.
Within this context, there remain areas where a combination
of software and security research could be informative; for
instance, the establishment of the initial ∆x could have a
relationship to the rigour of the process employed. While the
functional forms for σ and ∆x fulfil the required form, more
specific (potentially scenario-driven) forms would benefit
from ongoing studies in the study of security and may
provide alternative interpretations. Our aim in applying these
principles to the IWL was to examine the utility of SSE
process modelling in security economic modelling; to that
end, there are a number of models describing alternative
attacker–defender relationships, which could also benefit
from similar consideration of SSE process.

Finally, these complementary models still cover only
a portion of the overall system lifecycle; a full treatment
of system security investment must consider issues across
the SDLC phases, and include general propositions results
alongside empirical application. While more expressive and

encompassing than enterprise models alone, this contribu-
tion is best considered in light of the broad and complex dis-
cussion regarding security policy, compliance, maintenance,
and the conditions for system disposal.
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Appendix

Notation. The following is a list of notation employed in
this paper, provided for the reader’s reference.

Notation
t The time of the phase; the model runs as t = (−2,−1, 0, 1, . . .)

AD Shorthand for the “Architecture and Design Phase” (t = -2)
IT Shorthand for the “Implementation and Test Phase” (t = -1)

Per-phase actions, effectiveness
i General form for iterations: i = {iAD, iIT}

iAD, iIT Number of iterations in review and test
eff General form for phase effectiveness: eff = {α, β}
α Effectiveness of the review and test processes

Defender costs
c General form for in-phase costs of review, test: c = {cAD, cIT}

cAD, cIT Cost per test iteration to conduct a review or test
e General form for costs to fix errors: e = {efAD, efIT, ebIT}
efAD Cost of a flaw when found at review
efIT Cost of a flaw when found at test
ebIT Cost of a bug when found at test

IAD, IIT The total cost of the review and test processes
IP The total cost of the software process: IP = IAD + IIT

Defender uncertainty
σmax The starting uncertainty
σAD,σIT Amount of uncertainty remaining after review and test
σ General from for uncertainty (consistent with original IWL):

σ = σmax − σAD − σIT
Original IWL notation employed

a Asset value being guarded by the defender
z Amount the attacker loots from a upon successful attack
n The threats to the system

∆x The gradient of attack
x The expected attack costs
x The actual attack costs
k Initial (post-deployment) defence configuration
dt (Post-deployment) defensive configuration
λ Sunk costs (not employed in IWL-SSE)

TABLE 3: IWL-SSE Notation.


