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In this domain, we demonstrate why large populations of unpatched users remain even when
automatic updating is available, and then characterize how taxes on patching rights should
optimally be structured.
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1 Introduction

Security attacks on unpatched software continue to be a major problem. The Department of

Homeland Security’s United States Computer Emergency Readiness Team indicates that systems

running unpatched versions of software from providers such as Microsoft, Adobe, and OpenSSL are

consistently attacked (US-CERT 2015). The failure of software users to patch in a timely manner

enables attackers with malicious intentions to access their systems and oftentimes obtain full,

administrator-level control. Such intrusions lead to financial and privacy losses as users continue to

transact and use these systems unknowingly. Even worse, the presence of sizeable populations of

compromised systems on computer networks imposes a substantial externality on all network users

because these systems are leveraged in other criminal activities that negatively affect the public. In

fact, a continuous influx of new compromised systems is paramount to the successful operation of

botnets which are central to the criminal SPAM value chain (Levchenko et al. 2011), the execution

of distributed denial-of-service attacks (Fitzgerald 2015), and conducting of click fraud campaigns

(Ingram 2015).

Observing today’s cybersecurity attack landscape, the current patching process for security has

been less effective than desired (August et al. 2014). Many systems remain unpatched long after

patches are released. HP indicates in its recent Cyber Risk Report 2015, that “... the majority of

exploits discovered by our teams attempt to exploit older vulnerabilities. By far the most common

exploit is CVE-2010-2568 which roughly accounts for a third of all discovered exploit samples”

(HP Security Research 2015). According to HP, 64% of the top exploit samples in 2014 targeted

vulnerabilities from 2012 and prior. OPSWAT, which collects data from software users through

its security platform, finds that less than 29% of Windows operating systems in their data are

up-to-date (OPSWAT 2014). Similarly, the Canadian Cyber Incident Response Centre states that

patching applications and patching operating system vulnerabilities (in addition to whitelisting

and access control strategies) would prevent as much as 85% of targeted security attacks (CCIRC

2014).

The growing reality is that security is not a technical problem, it’s an economic one. Even

though security patches are available, many users are not deploying them because it is not in their

economic best interest to do so. For organizations, enterprise deployment of patches is a costly

process. Extensive testing of patches in development and staging environments, roll-out of updates

onto production servers, and final testing is both time consuming and resource intensive. Moreover,
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in aggregate there is a deluge of patches that system administrators must continuously monitor and

process. For end users, the situation is regrettably similar because security patching is often not

considered to be a priority. The deployment of updates and system rebooting is instead viewed as

an inconvenience, particularly when users feel their own productivity is of greater concern.

Software producers have long shielded themselves from liability using well-crafted license agree-

ments. However, the increasing breadth of software use in riskier operating environments including

the critical infrastructure, biomedical products, and automobiles, comes with increased exposure

to strict liability. For example, researchers have demonstrated the ability to hack into automotive

systems and hijack control over brakes and steering from drivers; vulnerabilities such as these can

be utilized to cause physical harm to citizens (Greenberg 2015). The security landscape is evolving

in this manner, and there will be more pressure than ever on software producers to become respon-

sible for the security of software and the ecosystem within which it runs. Positions such as the

one Microsoft took in 2013 when it completely ended support for Windows XP, placing 39% of the

personal computer user base at risk without security updates, will become less appealing (Jones

2013). Instead, vendors will have increased incentives to determine ways to make their products

less attack worthy in the eyes of motivated hackers.

In this paper, we offer an approach on how a software vendor can substantially increase security

in an incentive compatible way by encouraging improved user behavior. In particular, we argue

that a vendor should differentiate its software product by pricing patching rights. Specifically, the

vendor should charge users for the right to choose for themselves whether patches are installed

or not installed on their systems. The status quo is that all users are endowed with patching

rights, and a substantial portion of them elect not to exercise this right as a result. By charging

for patching rights, users who would otherwise have elected not to patch under the status quo

must now examine whether it is worth paying for a right that goes unexercised. This decision is

non-trivial as the expected security losses one would incur when retaining rights and remaining

unpatched depends on the security behaviors of all other users in aggregate. On the flip side, by

foregoing patching rights, users will have their systems automatically patched by the vendor and

pay a lesser price. In this light, users who give up patching rights cause less of a security externality

and benefit from discounted software prices.

We study the impact of optimally priced patching rights for a software product on the security

of the network, profitability, and the overall value of the product to the economy. While software

vendors tend to be painted as not caring about security, realistically their strategic motivations are
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much more complex. In fact, a riskier network is not just harmful to the users who bear losses.

The presence of a large unpatched user population creates disincentives for software usage which,

in turn, certainly hurts profitability for the vendor. We construct a model of security where users

can choose whether to purchase a software product and additionally whether to remain patched,

unpatched, or have their systems automatically updated by a software vendor. By characterizing

equilibrium consumer behavior in this setting, we can explore the potential benefits associated with

the proper pricing of patching rights. We then examine how our insights extend to the open-source

software (OSS) domain. Many OSS products are made available for free, thus we propose how a

priced patching rights policy can be implemented in this domain through taxes. We compare the

relative value of priced patching rights in proprietary and open-source settings, and characterize

how the advancement of automated patching technologies affects the magnitude of taxing required.

2 Literature Review

This work is related to three broad areas in the literature: (i) product differentiation and market

segmentation, (ii) economics of information security, and (iii) economics of open-source software.

With regard to the first stream, our paper is the first to examine how beneficial segmentation

in software markets can be constructed by differentiation on software patching rights. Within

the second area, our paper is most closely related to a strand that studies the management of

security patches. For the third area, our paper adds to a strand that examines the connection

between OSS and security. We make several contributions to these areas. Our work is based on the

original idea that patching rights should be managed. Having been first introduced qualitatively in

a perspectives piece (August et al. 2014), our paper is the first to formally model and analyze the

value of patching rights and clarify the impact that the pricing of patching rights has on security

and the value of software products. We aim to make a significant contribution to the literature in

this area where many researchers are working toward improving security and understanding why

simple patch availability has not led to very secure outcomes. Importantly, the insights generated

with our model have promising practical implications to the software industry. Software companies

have likely not considered differentiating on patching rights, and will be interested to learn how a

more profitable, more secure ecosystem can be achieved as a result.

In the following, we will detail how our paper fits with each of these areas in the literature,

beginning with the first. There is a well-developed literature in economics, marketing, operations
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management and information systems that examines the monopolist’s problem of whether to offer

and how to price quality-differentiated goods. Mussa and Rosen (1978) and Maskin and Riley (1984)

are foundational works that study this problem and characterize the monopolist’s optimal non-linear

price schedule. Moorthy (1984) generalizes this work to include nonlinear consumer preferences to

demonstrate how market segments become aggregated to reduce cannibalization with the firm’s

own product line. Gabszewicz et al. (1986) study how income dispersion affects the monopolist’s

offerings, demonstrating that only the highest quality product is offered under narrow dispersion and

the maximum number of qualities (and hence, segments created) is offered as dispersion becomes

wider. Desai (2001) studies the product line design problem when consumers differ in their taste

preferences in addition to their quality valuations. He shows that with two consumer segments

(in quality valuations) and differing taste preferences, it can be in the monopolist’s best interest

to provide both segments with their preferred quality level. Anderson and Dana (2009) develop a

general model of price discrimination to characterize the conditions under which a firm profitably

offers multiple products when it can only imperfectly segment its customers. They establish that an

important condition is that the percentage change in social surplus from product upgrades should

be increasing in consumer willingness to pay.

Moorthy and Png (1992), Chen (2001), and August et al. (2015) study how delays can be

utilized to achieve market segmentation in various contexts. Villas-Boas (2004) studies the product

line design problem when marketing the differences between products is costly, in which case the

product line may contract. Further, with vertically differentiated products, advertising costs lead

the firm to advertise the lower quality product more intensely because lower value consumers buy

only the lower quality product, and higher value consumers still derive surplus from consumption

of the lower quality product; however, lower value consumers do not buy the high quality product.

Debo et al. (2005) study an integrated market segmentation and production technology choice

problem of a firm considering the sale of remanufactured products in the market. Netessine and

Taylor (2007) study a model that combines a product line problem together with an economic

order quantity (EOQ) production setting. They examine how the interactions between the number

of products offered and production economies of scale, as well as product quality and inventory

holding costs, affect the optimal product line. Villas-Boas (2009) studies the product line design

problem when consumers have evaluation costs. This paper establishes how an expanded product

line’s association with higher prices may lead to fewer consumers engaging in product search. Thus,

contraction of the product line can be warranted even in the absence of costs.
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We study how a monopolist producer of software can expand its product line by differentiating

based on the patching rights included in each offering. In particular, the monopolist can charge

users for the right to choose whether or not security patches are deployed on their systems; in a

similar vein, he can enforce automatic deployment of security patches to users’ systems who prefer

not to pay to retain this right. In our model, the effective quality of the product is inclusive of secu-

rity attacks which are endogenously determined by the strategic protection behaviors employed by

consumers in equilibrium. Thus, a product line based on patching rights can encourage consumers

to self-select into preferable segments which can benefit endogenous security quality, generate ad-

ditional profits, and even positively affect social welfare. To the best of our knowledge, our paper

is the first to examine market segmentation based on patching rights. We highlight the practical

implications of rights-based differentiation to the software industry, covering both commercial and

open-source products.

Next, we discuss the literature that studies the management of security patches. Several papers

examine the optimal timing of security patch release and application, along with its close connection

to vulnerability disclosure. Beattie et al. (2002) characterize the optimal time to apply patches

when trading off patch instability and security risk exposure. Dey et al. (2015) compare several

patch application policies, varying by a measure of interest including the number of patches, time

between patching, and cumulative severity of patches. Cavusoglu et al. (2008) examine the role of

cost sharing and loss liability on time-driven patch management. Cavusoglu et al. (2007) and Arora

et al. (2008) examine the interaction between a vendor’s patch release timing and the disclosure of

vulnerabilities by a social planner.

Complementing this work on timing, several papers examine user patching incentives once

patches become available. August and Tunca (2006) present a base model of software purchasing

and patching in the presence of negative security externalities and patching costs, and then study

the impact of patching mandates, rebates, and taxes. Choi et al. (2010) study the link between

users’ patching incentives and the issue of vulnerability disclosure. Lahiri (2012) and Kannan et al.

(2013) study various aspects of the relationship between security patches and piracy. Our work is

closer in spirit to the latter group of papers which employ models with a focus on users’ patching

incentives. We build on this body of work and construct an originative model that includes an

automated patching option for users within a game theoretical context accenting negative exter-

nalities stemming from unpatched behavior. This inclusion serves two purposes. First, it permits

a characterization of the natural consumer market segmentation that arises in equilibrium as users
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strategically respond to security risk and expanded patching options. An understanding of equi-

librium consumption and security behavior serves to inform how security enhancements should be

marketed. Second, an automated patching option is the logical choice for the baseline product in

a policy where patching rights are contracted, which is the focus of our work.

Our paper is broadly connected to the greater literature on the economics of information security.

Png and Wang (2009) and Kannan et al. (2013) examine the interaction between protection

decisions and attacker efforts. Chen et al. (2011) and August et al. (2014) demonstrate the benefits

of diversification on security. Kannan and Telang (2005) and Ransbotham et al. (2012) contribute

to the discussion on vulnerability disclosure by examining whether markets for vulnerabilities are

helpful to measures of security and social welfare.

Which is more secure: open source or proprietary software? This question has been the center

of intense debate for years. OSS security vulnerabilities can be more easily spotted by developers,

some of whom may offer fixes. However, these vulnerabilities can also be more easily spotted and

attacked by malicious hackers as well. On the other hand, proprietary software might have secrecy

working in its favor although security through obscurity is largely considered not a good strategy.

The security community has argued both sides of the nuances of these observations. Schneier

(1999) contends that in cryptography the algorithm is typically open to assure correctness. Thus,

public algorithms which are designed to be secure even though they are open necessarily need to

be more secure than proprietary ones. In his view, OSS security should be similar since it cannot

simply rely on keeping the code secret. Other cryptography experts agree that opposing claims

by proprietary vendors are refutable (Diffie 2003). Schneider (2000) believes that the incentives

structure for developers and hackers has created a security landscape that is not governed by bugs

discoverable from opening source code - the real security problems lie elsewhere. Many experts

take the view that opening the source is necessary to build more secure systems, but certainly not

sufficient (Hoepman and Jacobs 2007, Wheeler 2003). Others suggest that whether open source

can improve security really comes down to the underlying economic incentives of the firms, users,

and hackers (Witten et al. 2001, Anderson 2002).

We contribute to the discussion of this question by comparing security measures across OSS and

proprietary contexts. Our focus however lies on how the difference in pricing (vendor-optimized

proprietary price and free OSS) leads to starkly different equilibrium usage and unpatched behavior,

with varying security implications in turn. Using our model, we are able to examine how the efficacy

of priced patching rights policies compares across source code strategies. In the case of OSS, we
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study how a welfare-motivated project organizer (social planner) would price (tax) these rights.

Thus, our work tackles this debate from a unique perspective that focuses on security as driven by

user incentives.

3 Model Description and Consumer Market Equilibrium

3.1 Model

There is a continuum of consumers whose valuations of a software product lie uniformly on V =

[0, 1]. The software is used in a network setting, thus exposing consumers to security risks associated

with its use. In particular, a vulnerability can arise in the software in which case the vendor makes

a security patch available to all users of the software. Because the security vulnerability can be

used by malicious hackers to exploit systems, users who do not apply the security patch are at risk.

The vendor offers two options for users to protect their respective systems. In doing so, the

vendor prices the software based on whether patching rights are granted to the consumer. Specif-

ically, if a consumer elects to purchase the software and retain full patching rights, she pays the

price p≥ 0. Having this right means she can choose whether to patch the software or not patch the

product and do so according to her own preferences. If she decides to patch the software, she will

incur an expected cost of patching denoted cp> 0. The patching cost accounts for the money and

effort that a consumer must exert in order to verify, test, and roll-out patched versions of existing

systems. If she decides not to patch the software, the probability she is hit by a security attack is

given by πsu, where πs> 0 is the probability an attack appears on the network and u is the size

of the unpatched population of users. This reflects the negative security externality imposed by

unpatched users of the software. If she is successfully attacked, she will incur expected security

losses that are positively correlated with her valuation. That is, consumers with high valuations

will suffer higher losses than consumers with lower valuations due to opportunity costs, higher

criticality of data and loss of business. For simplicity, we assume that the correlation is of first

order, i.e., the loss that a consumer with valuation v suffers if she is hit by an attack is αsv where

αs > 0 is a constant. The quantity πsαs can be considered as the effective security loss factor.

On the other hand, if she elects to purchase the software and relinquish patching rights, she

pays the price δp, where δ ∈ [0, 1]. In this case, the vendor retains full control over patching the

software and will automatically do so to better protect the network.1 The user incurs a cost of

1In interconnected networks, this is fairly easy to enforce; for example, vendors such as Adobe and Matlab enforce
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automated patching, ca> 0, which is associated with both inconvenience and configuration of the

system to handle automatic deployment of security patches gracefully. This cost is assumed to be

lower than the cost of patching, i.e., ca<cp. In general, a software vendor who releases a security

patch cannot test for compatibility of the patch with every possible user system configuration.

Thus, there is always some risk associated with an automatically deployed patch causing a user’s

system to become unstable or even crash. We denote the probability that the automated patch

fails with πa> 0. We assume that the loss associated with an automated patch deployment failure

is again positively correlated with her valuation, and that this correlation is of first order, denoted

as αa> 0. Thus, her expected loss associated with automated patching is given by πaαav.

Each consumer makes a decision to buy, B, or not buy, NB. Similarly, the patching decision

is denoted by one of patch, P , not patch, NP , and automatically patch, AP . In order to choose

P or NP , the consumer must pay the premium price p to retain patching rights. By choosing

AP , the consumer delegates patching rights to the vendor for a potentially discounted price δp.

The consumer action space is then given by S=({B}×{P,NP,AP})∪ (NB,NP ). In a consumer

market equilibrium, each consumer maximizes her expected utility given the equilibrium strategies

for all consumers. For a given strategy profile σ : V → S, the expected utility for consumer v is

given by:

U(v, σ),



v − p− cp if σ(v)= (B,P ) ;

v − p− πsαsu(σ)v if σ(v)= (B,NP ) ;

v − δp− ca − πaαav if σ(v)= (B,AP ) ;

0 if σ(v)= (NB,NP ) ,

(1)

where

u(σ),
∫
V
11{σ(v)= (B,NP )} dv . (2)

To avoid trivialities and without loss of generality, we reduce the parameter space to cp, ca ∈ (0, 1),

πs, πa ∈ (0, 1], αs, αa ∈ (0,∞), and πaαa ∈ (0, 1− ca). The latter restriction, πaαa + ca < 1, ensures

automated patching is economical.

3.2 Consumer Market Equilibrium

Before examining how patching rights should be priced, we first must characterize how consumers

segment across strategies for an arbitrary set of prices in equilibrium. Complicating the situation

real-time license checks for their subscription-based offerings. While it is always possible to circumvent protections,
most paying customers are unlikely to break the license agreement.
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is that the level of security risk is endogenously determined by the actions of consumers, thus we

first focus on understanding the effect of their strategic interactions on equilibrium behavior due

to the security externality imposed by unpatched users. The consumer with valuation v selects an

action that solves the following maximization problem:

max
s∈S

U(v, σ) , (3)

where the strategy profile σ is composed of σ−v (which is taken as fixed) and the choice being

made, i.e., σ(v) = s. We denote her optimal action that solves (3) with s∗(v). Further, we denote

the equilibrium strategy profile with σ∗, and it satisfies the requirement that σ∗(v) = s∗(v) for all

v ∈V.

Lemma 1 There exists a unique equilibrium consumer strategy profile σ∗ that is characterized by

thresholds vb, va, vp ∈ [0, 1]. For each v ∈V, it satisfies either

σ∗(v) =



(B,P ) if vp<v≤ 1 ;

(B,NP ) if vb<v≤ vp ;

(B,AP ) if va<v≤ vb ;

(NB,NP ) if 0≤ v≤ va ,

(4)

or

σ∗(v) =



(B,P ) if vp<v≤ 1 ;

(B,AP ) if va<v≤ vp ;

(B,NP ) if vb<v≤ va ;

(NB,NP ) if 0≤ v≤ vb .

(5)

Lemma 1 establishes that if a population of patched consumers arises in equilibrium, it will

consist of a segment of consumers with the highest valuations. These consumers prefer to shield

themselves from any valuation-dependent losses seen with either remaining unpatched and bearing

security losses or selecting automated patching and bearing patch instability losses. Importantly,

this segment need not arise, and vp=1 in cases where the valuation-dependent losses are smaller

than the patching costs. For the middle segment on the other hand, the segment of consumers

who elect for automated patching and the segment of consumers who elect to remain unpatched

can be ordered either way. This ordering depends on the relative strength of the losses under each

strategy.
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In Section A.2 of the Appendix, we present a complete characterization of the parameter con-

ditions and thresholds for each possible consumer market structure that can arise in equilibrium.

There are seven possible structures, with two of the most relevant to the current discussion having

all market segments represented in equilibrium, i.e., 0<vb<va<vp< 1 and 0<va<vb<vp< 1.

These two structures obtain under broad parameter conditions which are characterized in the Ap-

pendix, and as will be seen in the next section, these conditions can be satisfied under equilibrium

pricing decisions.

4 Pricing Patching Rights

4.1 Proprietary Software

We turn our attention to the pricing equilibrium for standard, proprietary software. We denote the

vendor’s profit function by

Π(p, δ) = p

∫
V
1{σ∗(v|p,δ)∈{(B,NP ),(B,P )}}dv + δp

∫
V
1{σ∗(v|p,δ)=(B,AP )}dv , (6)

noting marginal costs are assumed to be negligible for information goods. Because we are interested

in determining the benefit of optimally pricing the right for a user to determine whether or not to

install patches on her system, it is useful to first present a characterization of the equilibrium when

this right is not priced. In this reference case, referred to throughout the paper as the status quo,

δ=1, which is standard practice for the industry. In this case, the vendor sets a price p for use of

the software by solving the following problem:

max
p∈[0,1]

Π(p, δ)

s.t. (vb, va, vp) are given by σ∗(· | p, δ),

δ=1.

(7)

Given a price p∗ that solves (7), we denote the profits associated with this optimal price by ΠSQ ,

Π(p∗, 1). Since the value of automated patching options on security is most applicable under higher

security risk, our study centers on a region where πsαs is suitably high such that patching is

worthwhile. In this region, consumers will be shown to have sufficient incentives to patch and

protect their systems under equilibrium pricing. This is to say that the patching threshold satisfies
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vp< 1, and the consumers with valuations v≥ vp will patch in equilibrium.

Lemma 2 (Status Quo) Suppose that πsαs>ω and δ=1 (i.e., when patching rights are not

priced). If cp − πaαa < ca ≤ 1− πaαa − (1− cp)
√
1− πaαa, then

p∗=
1

2
(1− πaαa − ca) +

4c2a(1− πaαa)(ca − 1
2(1− πaαa − ca)(1− 2πaαa))

(1− πaαa + ca)3πsαs
+Ka , (8)

and σ∗ is characterized by 0<vb<va<vp< 1 such that the lower tier of users remain unpatched and

the middle tier prefers automated patching. On the other hand, if ca > 1−πaαa−(1−cp)
√
1− πaαa,

then

p∗=
1− cp

2
−

2c2p(1− 3cp)

(1 + cp)3πsαs
+Kb , (9)

and σ∗ is characterized by 0<vb<vp< 1 such that there is no user of automated patching in equi-

librium.2

In the first part of Lemma 2, we examine the reference case under conditions where the cost of

automated patching is within a moderate range.3 An immediate observation is that when patching

rights are free as in the status quo, the consumer segment whose equilibrium strategy is to use

automated patching is always the middle tier. This occurs because when a user compares an

automated patching strategy (B,AP ) to an unpatched strategy (B,NP ), the price is the same for

both options, i.e., p = δp when δ=1. Therefore, the strategy (B,AP ) is preferred to (B,NP ) as

long as v[πsαsu(σ
∗)−πaαa]>ca is satisfied. If this inequality is satisfied for any user with valuation

v, it will also be satisfied for any user with a valuation higher than v. Thus, the automated patching

segment of users will always form the middle tier.

This observation highlights an important potential impact of priced patching rights; if the

premium charged for patching rights, p(1 − δ), is greater than ca and the unpatched population,

u(σ∗), decreases enough in equilibrium, then the lower tier can instead be composed of users who

strategically choose automated patching (see (4) in Lemma 1). In this sense, a priced patching

rights policy can fundamentally change segmentation behavior in the consumer market which in

turn can have a significant impact on security and profitability.

When patching rights are priced, the vendor jointly selects (p, δ) to maximize his profits. In

this case, the premium p(1 − δ) is charged for patching rights, regardless of whether the patching

2In the Appendix, the existence of ω and characterization of Ka and Kb are proven. Going forward, we will
represent constants that are of order O

(
1/(πsαs)

2
)
using the notation K and an enumerated subscript.

3Our focus here is on a region in which the three options, (B,P ), (B,NP ), and (B,AP ) are comparable and each
is selected by some group of users in equilibrium. This is the purpose of the conditions on ca.
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rights are exercised. Alternatively, p(1 − δ) can be considered the “discount” given to users who

agree to have their systems automatically updated to reduce security risk on the network. When

patching rights are priced in this fashion, the vendor’s pricing problem is formulated as follows:

max
(p,δ)∈[0,1]2

Π(p, δ)

s.t. (vb, va, vp) are given by σ∗(·|p, δ).
(10)

Similarly, under the optimal (p∗, δ∗) which solve (10), we denote the associated profits by ΠP ,Π(p∗,

δ∗).4

Lemma 3 (Priced Patching Rights) Suppose that πsαs>ω and patching rights are priced by

the vendor.

(i) If ca < min [πaαa − cp, cp(1− πaαa)], then

p∗ =
1− cp

2
+

2c2p(πaαa)
2(3(ca − cp) + πaαa)

(ca − cp − πaαa)3πsαs
+Kc, (11)

δ∗ = δ̃ −
4c2p(πaαa)

2(1− ca − πaαa)(3(ca − cp) + πaαa)

(1− cp)2(ca − cp − πaαa)3πsαs
+Kd, (12)

and σ∗ is characterized by 0<va<vb<vp< 1, where δ̃= 1−πaαa−ca
1−cp

, such that the lower tier

of users prefer automated patching and the middle tier remains unpatched ;

(ii) However, if |πaαa − cp| < ca < cp(1− πaαa), then

p∗ =
1− cp

2
+

ca(−1 + ca + 2cp + πaαa − 2cpπaαa)(ca + cp − cpπaαa)

(1 + ca − πaαa)3πsαs
+Ke, (13)

δ∗ = δ̃+
2ca(−1 + ca + 2cp + πaαa − 2cpπaαa)

(
c2a + (−1 + πaαa)

(
c2p + πaαa − 2cpπaαa

))
(1− cp)2(1 + ca − πaαa)3πsαs

+Kf ,

(14)

and σ∗ is characterized by 0<vb<va<vp< 1 such that the lower tier of users remains un-

patched and the middle tier prefers automated patching.

Lemma 3 demonstrates that a restructuring of the consumer market can indeed be the equi-

librium outcome when patching rights are priced. Specifically, if the patching costs are small such

4Going forward, we will use subscripts “SQ” and “P” to indicate a particular measure refers to the outcome under
the status quo and under priced patching rights, respectively, for consistency.
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that part (i) of Lemma 3 is satisfied, then the equilibrium patching rights are priced in a way

that consumers who select automated patching in equilibrium form the lower tier of the consumer

market. By (11) and (12), it is clear that the premium charged for patching rights p∗(1−δ∗) is only

greater than ca when cp is small enough. When standard patching costs are small, the software

vendor has an incentive to charge a high price for his software. One can think of it as being better

software - cheap to keep fully maintained to avoid security losses. The vendor can achieve a rela-

tively large user population, most of which chooses standard patching, even with a high price. In

this case, it is necessary to give a significant discount to users in order to incentivize them to elect

automated patching because of standard patching’s cost effectiveness. This is reflected in (12); δ∗

decreases as cp decreases. Thus, the patching rights premium p∗(1 − δ∗) becomes substantial and

is an incentive-compatible option only for higher valuation users. Said differently, low valuation

users will find the patching rights premium to be too large, and will choose automated patching in

equilibrium.

On the other hand, when the patching rights premium is limited, the equilibrium price and

discount induce a consumer market structure that more closely resembles what unfolds under the

status quo. Part (ii) of Lemma 3 shows that this structure is characterized by the threshold

ordering 0<vb<va<vp< 1, matching the threshold ordering in the first part of Lemma 2. Thus,

under both the status quo and under priced patching rights, the middle tier is incentivized to select

the automated patching option in equilibrium.

Next, we turn toward examining the value of priced patching rights to the software industry

and the security of software networks.

Proposition 1 For sufficiently high πsαs, if cp − πaαa<ca< 1− πaαa − (1− cp)
√
1− πaαa, then

pricing patching rights can improve profits while reducing the security externality generated by

unpatched users as compared to when patching rights are not priced. The percentage improvement

in profitability is given by

ΠP −ΠSQ

ΠSQ
=

(1− πaαa)(ca − cp + πaαa)
2

πaαa(1− ca − πaαa)2
+Kg . (15)

Proposition 1 highlights an important message from our study: software vendors should begin

considering differentiation of their products based on patching rights. Simply providing patches

for security vulnerabilities of software to users as a security strategy has not worked well in the

past. In many cases, this leads to large unpatched user populations as these users determine its
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not in their best interest to patch. The externality they cause is detrimental to security and to

the vendor’s profitability. Proposition 1 formally establishes that the proper pricing of patching

rights can increase profits for vendors to an extent characterized in (15) and simultaneously reduce

the size of the unpatched population in the network. Thus, there are large potential economic

and security benefits associated with a priced patching rights strategy, which can be an important

pricing paradigm shift for the software industry.

Product differentiation is an important topic studied in economics and marketing, and the

versioning of information goods has further nuanced findings (Bhargava and Choudhary 2001, 2008,

Johnson and Myatt 2003). In particular, for these goods which have a negligible marginal cost of

reproduction, a software vendor finds it optimal to release only one product (no versioning) when

consumers heterogeneous taste for quality is uniformly distributed. In such a case, cannibalization

losses outweigh differentiation benefits. In the current work, Proposition 1 demonstrates that if the

versioning is instead on patching rights, a versioning strategy is once again optimal for the vendor.

In this case, the software vendor can profitably benefit by increasing the price of the version with

patching rights (p∗) relative to the price point under the status quo. By doing so, while concurrently

decreasing the price of the version without patching rights (automated patching only) to (δ∗p∗),

there are several effects as consumers strategically respond. First, a higher p∗ puts pressure on any

user who would be unpatched under the status quo to reconsider the trade-off. Under the status

quo equilibrium consumer market structure (i.e., 0<vb<va<vp< 1), the unpatched users form the

lower tier of the consumer market (those with valuations between [vb, va]). Because patching rights

are endowed to all users under the status quo, these users remain unpatched and contribute to a

larger security externality on the network. Under priced patching rights, a higher p∗ makes it now

more expensive to remain in the population as an unpatched user causing this externality. Second,

given the new equilibrium prices, it becomes relatively cheaper to opt for automated patching at a

discount of p∗(1− δ∗). This provides additional incentives to encourage better security behaviors.

On the other hand, a higher price can be detrimental to usage and associated revenues, and a

reduced unpatched population can create incentives for users who were patching under the status

quo to now remain unpatched.

The net impact of these effects depends on which consumer market structure is induced by the

vendor’s new prices. As Lemma 3 demonstrates, the vendor may induce a segmentation charac-

terization of either 0<va<vb<vp< 1 or 0<vb<va<vp< 1. We begin by discussing the latter

structure since it matches the status quo. In equilibrium under patched pricing rights, vb increases
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and va decreases relative to the status quo. Thus, the size of the unpatched population (i.e.,

u= va−vb) shrinks as it is compressed on both ends. However, vp increases because of the patching

rights premium. In aggregate, the vendor is able to increase profitability by charging a premium to

high tier consumers (valuations in [vp, 1]) who are willing to pay the premium to protect their valu-

ations from incurrence of either unpatched security losses or automated patching instability losses,

and low tier consumers (valuations in [vb, va] are willing to pay the premium because of the smaller

security externality that is associated with a smaller equilibrium unpatched user population.

For the former case in which the vendor sets prices such that the equilibrium consumer market

structure characterization takes the form 0<va<vb<vp< 1, there is a restructuring in the con-

sumer market segments (see the discussion following Lemma 3). It is in the vendor’s best interest to

have a relatively large patching rights premium in this region which makes the retaining of patching

rights only incentive compatible for the higher valuation users. Low valuation users respond to a

substantial discount by forgoing patching rights and switching to automated patching. Because low

valuation users tend to be the ones with reduced incentives to patch and protect themselves, the

market segmentation that occurs also leads to a smaller unpatched population and less resultant

security risk. In a similar spirit to the discussion above, this is profitable to the vendor as it is

able to raise prices due to greater security and high valuations users’ willingness to pay to retain

patching rights.

By characterizing the percentage improvement in profitability associated with a priced patching

rights strategy in (15), we can highlight the type of market characteristics where efforts for a vendor

to reexamine patching rights is more fruitful. In particular, the relative improvement in profitability

is increasing in ca and decreasing in cp. As the cost of automated patching increases through

the relevant region (see Proposition 1), under the status quo the vendor necessarily reduces the

software’s price to make the automated patching option continue to be affordable. This is important

because it prevents a significant loss in users resulting from higher security risk that can arise if

the automated patching option becomes too costly. On the other hand, under priced patching

rights the vendor can achieve a similar effect by strategically adjusting the discount targeted to the

users of the automated patching option rather than the entire user population. When the cost of

standard patching (cp) decreases, the vendor achieves a relatively larger increase in profits. In this

case, the premium charged to users who elect to retain patching rights can be increased as patching

costs become lower.
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One interesting implication of our model concerns a comparison of prices under the status quo

and under optimally priced patching rights. One might expect that if p∗SQ is the price under the

status quo, then δ∗p∗<p∗SQ<p∗ is satisfied under equilibrium when patching rights are priced.

That is, users who want to retain patching rights pay a premium and users who opt for automated

patching receive a discount relative to the status quo. However, in the following proposition we

demonstrate that the vendor may strategically raise both prices in equilibrium, in comparison to

status quo pricing.

Proposition 2 For sufficiently high πsαs and cp−πaαa<ca< 1−πaαa− (1−cp)
√
1− πaαa, when

either

(i) ca < min
[
πaαa − cp, cp(1− πaαa),

1
3−2πaαa

− πaαa

]
, or

(ii) |πaαa − cp| < ca < min
[
cp(1− πaαa),

(1−2cp)(1−πaαa)
5−4πaαa

]
,

the vendor prices patching rights such that both p∗ and δ∗p∗ are higher than the common price,

p∗SQ, when patching rights are endowed to all users.

Not only does the endowment of patching rights lead to excessive security risk due to poor patching

behavior, it also fails to reflect the value of security provision being offered by the vendor. Vendors

who create better, more secure solutions for their customers should be able to harvest some of that

value creation via increased prices. Proposition 2 highlights this important point by characterizing

broad regions where the vendor increases the price of both options above the single price offered

in the case of the status quo. This occurs for a lower level of automated patching costs (ca),

and the reason both prices increase is twofold. First, users who prefer to retain patching rights

are willing to pay more for smaller unpatched populations (i.e., reduced security risk) and control

over their own patching process. Second, the value associated with cost-efficient and more secure,

automated patching options is more readily harvested when users of this option are ungrouped

from users who choose not to patch under the status quo. The pricing of patching rights helps to

enable this separation. Thus, when a vendor differentiates in this manner based on “rights,” he

can simultaneously increase prices, encourage more secure behaviors, and generate higher profits.

The outcome under this business strategy is noteworthy because it is starkly different than one in

which security protections are sold and those who opt out are both unprotected and cause a larger

security externality.
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Proposition 2 suggests that usage may become more restricted with priced patching rights.

Moreover, it is unclear how specific costs associated with security would be affected as consumers

strategically adapt their usage and protection decisions. Proposition 1 demonstrates that priced

patching rights can reduce the size of the unpatched population relative to the status quo which in

turn implies the risk associated with security attacks decreases. However, the magnitude of losses

associated with these attacks critically depends on who actually bears them as they are valuation-

dependent and consumers’ equilibrium strategies will shift when patching rights are priced. We

denote the expected losses associated with security attacks stemming from the unpatched popula-

tion u(σ∗) with

SL,
∫
V
1{σ∗(v)=(B,NP )}πsαsu(σ

∗)vdv . (16)

In a similar fashion, we denote the expected losses associated with configuration and instability of

automated patching with

AL,
∫
V
1{σ∗(v)=(B,AP )}(ca + πaαavdv) , (17)

and the total costs associated with standard patching with

PL,
∫
V
1{σ∗(v)=(B,P )}cpdv . (18)

The net impact of consumers changing their patching strategies (standard patching, remaining

unpatched, electing for automated patching) on these security-related costs is unclear. In order to

examine these concerns in aggregate, we also define total security-related costs as the sum of these

three components:

L,SL+AL+ PL , (19)

in which case social welfare can be expressed as

W ,
∫
V
1{σ∗(v)∈{(B,NP ),(B,AP ),(B,P )}}vdv − L. (20)

In the following proposition, we establish that when automated patching costs are not too large,

the pricing of patching rights can in totality have a negative effect on social welfare. This result

is interesting in that both losses associated with security attacks and total costs associated with

standard patching can be shown to decrease when patching rights are patched, and yet priced
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patching rights can still be detrimental from a welfare perspective.

Proposition 3 For sufficiently high πsαs, if cp − πaαa<ca< 1− πaαa − (1− cp)
√
1− πaαa, then

priced patching rights can either decrease or increase security attack losses, but leads to a small

decrease in social welfare. Technically, PLP <PLSQ, ALP >ALSQ, WP <WSQ and

(i) if ca < min [πaαa − cp, cp(1− πaαa)], and

4c2pπaαa

−ca + cp + πaαa
− (ca(2− πaαa) + πaαa(1− πaαa))

2

(1 + ca − πaαa)(1− πaαa)
> 0 , (21)

then SLP ≥SLSQ ;

(ii) otherwise, SLP <SLSQ .

The parameter region in Proposition 3 corresponds to ca being relatively lower and satisfying

the conditions of Lemmas 2 (first part) and 3. Recalling that under priced patching rights, the

consumer market structure can be characterized by either 0<vb<va<vp< 1 or 0<va<vb<vp< 1

in equilibrium, we first examine the former case where the consumer market structure matches

the characterization under the status quo. By pricing patching rights, the vendor will induce an

expansion of the consumer segment that elects for automated patching on both sides. That is,

some unpatched users as well as some standard patching users under the status quo will now

choose automated patching. Additionally, some unpatched users are now out of the market due

to the increase in the price p∗ associated with retained patching rights (technically, vb increases).

Therefore, losses associated with unpatched security attacks and costs associated with standard

patching are both lower in comparison to the status quo, i.e., SLP <SLSQ and PLP <PLSQ.

However, the expansion of the consumer segment choosing (B,AP ) turns out to be costly.

In particular, because consumers have the opportunity to relinquish patching rights to save the

premium (1− δ∗)p∗, the consumers that make up the expansion of this segment may incur greater

security investments and system instability losses in order to avoid paying this premium. For

example, at the higher end of the valuation space, a consumer may have incurred only cp under

status quo pricing but when incentivized to shift to automated patching because of the discount, she

now incurs a security cost of ca+πaαav which is valuation-dependent and can exceed cp. A similar

increase in costs can arise at the lower end as consumers shift from losses associated with security

attacks to investments and instability losses associated with automated patching. Proposition

3 formally establishes that the decrease in usage and increased aggregate costs incurred related
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to automated patching ultimately outweigh the reduction in security attack losses and standard

patching costs from a welfare perspective. From a software vendor’s perspective, the ability to

market their product offerings as geared to reduce security risk and attack losses while increasing

profits is enticing, and having awareness of the impact on welfare can help shape these initiatives.

Encouragingly, we also characterize several regions where social welfare is positively impacted by

priced patching rights as well in Proposition 4 and the discussion of Figure 1.

But first turning attention to the case where the vendor’s pricing behavior induces a restructur-

ing of segmentation in the consumer market to 0<va<vb<vp< 1, we find the outcome is similar

but has some nuanced differences. In this case, the consumers whose equilibrium strategy is to

retain patching rights but not patch (users with valuations between vb and vp) have higher valua-

tions than those preferring this strategy under the status quo case. Thus, even though the size of

the unpatched population, u(σ∗), decreases under priced patching rights, the higher valuations of

the consumers exhibiting the risky, unpatched behavior can result in them incurring higher losses

when bearing security attacks. It hinges on whether u(σ∗) decreases sufficiently to offset the higher

valuations of the risky population. In part (i) of Proposition 3, the conditions required for the

restructured consumer market as laid out in Lemma 3 appear. Further, (21) provides the condi-

tion whereupon security attack losses are, in fact, higher under priced patching rights, despite the

reduction in unpatched usage. One can think of this outcome as characterized by fewer attacks

but on higher value targets leading to greater losses in equilibrium. This condition tends to be

satisfied as the likelihood of automated patch instability increases which provides more incentive

for consumers to remain unpatched instead. With the potential of security attack losses to also

increase, welfare is even further suppressed compared to the status quo.

Next, we study the case where automated patching costs are at a level large enough that an

automated patching segment is absent under the status quo but small enough that this segment

arises when patching rights are priced (see the second part of Lemma 2 and Lemma 3).

Proposition 4 For sufficiently high πsαs, if 1−πaαa−(1−cp)
√
1− πaαa≤ ca<cp(1−πaαa), then

priced patching rights leads to decreased security attack losses and an increase in social welfare.

Technically, SLP <SLSQ, PLP <PLSQ, ALP >ALSQ, and WP >WSQ.

Proposition 4 examines a higher cost of automated patching in which case, under status quo pricing,

the consumer market equilibrium is characterized by 0<vb<vp< 1 (Lemma 2). One can think of

this as a context where automated patching technology is inferior and users elect not to use it in
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equilibrium. This behavior can result in a large unpatched population and substantial security risk,

causing many potential consumers to prefer not to be users of the product. Thus, the value of a

priced patching rights policy can be lucrative if it provides sufficient incentives to reduce unpatched

behavior and expand usage. Under optimally priced patching rights, users who were unpatched

under the status quo are incentivized by a discount to use the automated patching option. In that

automated patching is an inferior technology in this context, these users may bear greater costs

and instability losses associated with automated patching in exchange for receiving this discount.

These greater costs are detrimental to welfare.

On the other hand, because the unpatched population is significantly reduced, losses associated

with security attacks are lower (SLP <SLSQ). Moreover, because the vendor makes the automated

patching available at a discount, usage in the market for the software expands. In fact, when the

loss factor on automated patching technology (πaαa) is at the high end of the focal region, both

the price of the product with patching rights (p∗) and without (δ∗p∗) can be lower than the price

under the status quo (p∗SQ). Thus, usage in the market can expand substantially, and the additional

surplus generated from these consumers who were non-users under the status quo helps to benefit

welfare. Proposition 4 establishes that the net effect of these factors is positive, and priced patching

rights can have a positive influence on social welfare.

While the pricing of patching rights is quite effective at reducing unpatched populations and

losses associated with security attacks, Propositions 3 and 4 demonstrate that its impact of welfare

can be mixed when security risk is sufficiently high. In Figure 1, we examine the impact on welfare

as the security loss factor becomes lower under smaller automated patching costs. As can be seen

in panel (a) of Figure 1, a priced patching rights strategy can also be beneficial to both vendor

profits and social welfare relative to the status quo strategy as πsαs decreases. Under the status

quo, the consumer market equilibrium is characterized by 0<vb<va<vp< 1 throughout panel

(a). However, two different consumer market structures are represented under priced patching

rights. To the right of the discontinuity, the characterization is the same, while to the left of

the discontinuity (hence lower πsαs), the structure becomes 0<va<vb< 1. In other words, as

πsαs decreases, patching rights are priced in a way that significantly restructures the equilibrium

consumer strategies in comparison to the status quo; consumers with high valuations retain patching

rights but choose to remain unpatched and consumers with lower valuations forgo rights and either

shift to automated patching or exit the market.
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Figure 1: Impact of a priced patching rights (PPR) strategy on social welfare for varying effective
security risk, compared to the status quo (SQ). In panel (a), ca=0.1, and in panel (b), ca=0.2.
The common parameter values are αa=3.5, πa=0.1, and cp=0.4.

What is most interesting about this reshuffling is that the consumers who were causing the

security risk no longer do so and, as a result, the consumers who were incurring standard patching

costs to shield themselves from the security risk also no longer need to do so. In this sense, a priced

patching rights strategy not only reduces security risk, it enables high valuation users to avoid

incurring what are typically large patching costs associated with standard patching processes that

have consistently been a financial burden on organizations. The net result of priced patching rights

is that total costs related to automated patching increase (the automated patching population

expands), costs associated with standard patching disappear (patching burden is relieved), and

security attack losses stemming from unpatched usage is reduced (significant reduction in the size

of the unpatched population). As a result, social welfare increases under priced patching rights

in comparison to the status quo as the security loss factor decreases out of region covered by

Proposition 3.

Panel (b) of Figure 1 illustrates the finding from Proposition 4 that social welfare increases under

priced patching rights for a high security loss factor. Moreover, the benefits to welfare also extend

to a lower range of security losses which is depicted as well. In summary, the pricing of patching
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rights presents an opportunity for vendors of proprietary software to not only improve profits, but

also improve welfare by decreasing the magnitude of the externality generated by unpatched usage,

even to the degree that the patching burden can be relieved. In the next section, we examine how

automated patching and the management of patching rights interact with open-source software

which is commonly made available free of charge.

4.2 Open-Source Software

With proprietary software, the combination of an automated patching option being available and

the vendor’s equilibrium pricing behavior tend to together help limit the size of the unpatched

population that develops, even under status quo pricing. However, for open-source software (OSS)

that is freely available, an automated patching option simply being available has a quite different

impact on equilibrium outcomes. One might think that because a large unpatched population

arises in the absence of a price, an automated patching option would help to reduce this unpatched

population drastically. However, as we will see, the unpatched population that results even with

the availability of automated patching can be substantial. Therefore, a policy that effectively prices

patching rights in the open-source domain has significant potential.

In the following proposition, we examine how offering an automated patching option affects

the size of the unpatched population in equilibrium. To do so, we compare it to an alternative

scenario in which the consumer strategy set is restricted to S̃=({B}×{P,NP})∪ (NB,NP ) thus

excluding AP . We denote the equilibrium size of the unpatched population in this case with ũ(σ∗).

Our focus is on the most relevant parameter regime where the total security costs associated with

automated patching (πaαa, ca) are reasonably close in magnitude to the standard patching cost

(cp).

Proposition 5 Suppose cp − ca<πaαa< 1− ca/cp. Then, the inclusion of an automated patching

option for consumers has the following impact on the size of the unpatched population in equilibrium,

dependent upon the level of the effective security loss factor:

(i) if πsαs≤ cp(πaαa)2

(cp−ca)2
, then u(σ∗)= ũ(σ∗) ;

(ii) if
cp(πaαa)2

(cp−ca)2
<πsαs<

1−πaαa
ca

, then u(σ∗)< ũ(σ∗) ;

(iii) if πsαs≥ 1−πaαa
ca

, then u(σ∗)= ũ(σ∗) .
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Figure 2: Equilibrium consumer market structure illustration for open-source software under a
high effective security loss factor. Panel (a) depicts the structure when automated patching is not
available, and panel (b) depicts the structure when it is available.

Proposition 5 makes an important statement about the role of automated patching as it re-

lates to the security of OSS: Even with some consumers choosing to use automated patching in

equilibrium, the size of the unpatched population may simply remain unchanged. Proposition 5 es-

tablishes this behavior occurs under both a low and high effective security loss factor. Only within

a medium range of security losses can an automated patching lead to a reduction in the size of

the unpatched population. Perhaps most unsettling is part (iii) of Proposition 5. One would hope

that the beneficial impact on security of an automated patching option would be highest when the

effective security losses are also high. This is not the case, and, in fact, the unpatched population

is exactly the same size with or without an automated patching option.

To understand why, it is useful to describe how users segment in equilibrium. When an auto-

mated patching option is not available, users with the highest valuations still prefer the standard

patching option because they are unwilling to bear valuation-dependent losses, i.e., πsαsu(σ
∗)v

by remaining unpatched. When OSS has zero price, all consumers with positive valuations would

prefer to use the software but cannot because of the security losses associated with a large un-

patched population. Therefore, consumers with lower valuations begin to enter until the security

externality becomes large enough that no other consumer elects to use. The equilibrium consumer

market structure is illustrated in panel (a) of Figure 2. Notably, under a high effective security

loss factor, there can be a significant fraction of would-be users out of the market because of the

unpatched users (those with valuations between vb and vp) causing risk.

When an automated patching option becomes available, users with the highest valuations still
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prefer the standard patching option because automated patching is also associated with valuation-

dependent losses, i.e., πaαav. For users with moderate valuations, the trade-off shifts in favor of

automated patching because they have lower value-at-risk which does not justify the higher costs

associated with standard patching (recall cp>ca) to fully protect their valuations. For even lower

valuation users, they will choose to remain unpatched, not even being willing to incur the cost of

automated patching, ca. This lowest segment of consumers faces the same trade-off as described in

the case without automated patching - these users will continue to enter until there is a sufficiently

large unpatched population that the next marginal user prefers not to use. Thus, the existence of

an automated patching option only serves to shift the risky usage down the valuation space, which

is depicted in panel (b) of Figure 2. What is important is that these consumers must be willing

to use the software in the face of some risk, and it is precisely the lack of a price which creates

a large potential user population. Therefore, the actual impact of an automated patching option

for OSS is for market expansion. More consumers can become users and separate across protected

forms, creating the opportunity for additional consumers (who would have been non-users without

automated patching) to enter into the market. However, these additional users who enter and do

not patch continue to cause an equivalent security externality on the network.

Part (ii) of Proposition 5 demonstrates that when the effective security loss factor is moderate,

the size of the unpatched population can shrink when an automated patching option is available.

Building on the preceding discussion, what changes in this case is that the consumer market gets

covered and there is no more room to expand risky usage at the lower end of the valuation space.

Thus, OSS products with moderate effective security losses that are necessarily in widespread use

can benefit from an automated patching option by effecting an even further reduction in security

risk. Finally, part (i) of Proposition 5 identifies conditions under which the security risk is suffi-

ciently low such that automated patching is not a viable option, in which case there is no difference

between the two scenarios.

From the preceding discussion, we see that OSS may have a sizable mass of unpatched users

even when an automated patching option is offered. We next investigate the value of a policy

analogous to priced patching rights in the open-source domain. In particular, we study a tax on

patching rights set by a social planner to help mitigate the negative externality associated with

unpatched usage. We begin by characterizing the equilibrium consumer market structures that

emerge in both the open-source status quo and under the prospective tax policy, focusing on the

case where security losses are appreciable and the use of automated patching solutions is incentive
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compatible.

Lemma 4 (OSS, Status Quo) Suppose that πsαs>ω. If cp − πaαa<ca<cp(1− πaαa), then σ∗

is characterized by 0<vb<va<vp< 1 such that the lower tier of users remain unpatched and the

middle tier prefers automated patching. If ca≤ cp−πaαa, then σ∗ is characterized by 0<vb<va< 1

such that no consumer elects for standard patching in equilibrium.

A comparison of equilibrium consumption under the status quo across proprietary and OSS cases is

revealing. Examining Lemmas 2 and 4 where the market outcome is characterized by 0<vb<va<vp< 1,

it becomes clear that the region of the parameter space in which we observe automated patching is

larger in an OSS setting than in a proprietary one. In this sense, we are currently more likely to see

consumers choosing automated patching options with OSS relative to proprietary software, across

software classes; this behavior is good for security. On the flip side, there will also be a relatively

larger mass of unpatched users in the OSS case, which is detrimental to security. Thus, it is useful

to examine how the taxing of patching rights can mitigate this downside.

Analogous to a vendor’s pricing of patching rights for proprietary software, we study a govern-

ment’s taxing of patching rights for OSS. As a way to decrease the unpatched population size and

as a result increase social welfare, the government may charge a tax (τ > 0) on patching rights. For

a given strategy profile σ : V → S, the expected utility for consumer v is then given by:

U(v, σ)=



v − τ − cp if σ(v)= (B,P ) ;

v − τ − πsαsu(σ)v if σ(v)= (B,NP ) ;

v − ca − πaαav if σ(v)= (B,AP ) ;

0 if σ(v)= (NB,NP ) .

(22)

Next, we provide a characterization of both the equilibrium tax set by the government and the

equilibrium consumer market structure that is induced by the tax.

Lemma 5 (OSS, Taxed Patching Rights) Suppose that πsαs>ω and patching rights are taxed.

Then,

(i) if cp − πaαa<ca<cp(1− πaαa), then

τ∗=
πaαa

πsαs
+Kh , (23)

and σ∗ is characterized by 0<vb<va<vp< 1.
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(ii) if (πaαa)2

1−πaαa
<ca≤ cp − πaαa, then

τ∗=
ca

2(1− πaαa)
− 1− 3πaαa

16(1− πaαa)πsαs
+Ki , (24)

and σ∗ is characterized by 0<vb<va< 1.

(iii) if ca≤ cp − πaαa and ca≤ (πaαa)2

1−πaαa
, then

τ∗=
ca + πaαa

2
+

(ca − 3πaαa)(ca + πaαa)

16πsαs
+Kj , (25)

and σ∗ is characterized by 0<va<vb< 1.

First, we examine part (i) of Lemma 5 where ca is within an intermediate range such that both

standard patching and automated patching populations are present in equilibrium. In this region,

an optimally configured tax reduces the size of the unpatched population in such a way that the

consumer indifferent between automated patching and remaining unpatched under the status quo

now switches to being unpatched under the tax. In other words, the threshold va under the optimal

tax is higher than its counterpart in the status quo. Thus, the purchasing threshold vb (i.e., the

consumer indifferent between being an unpatched user and a non-user) also moves relatively even

higher in comparison to the status quo due to the tax imposition. The net effect of both thresholds

increasing in this manner yields a smaller unpatched population in equilibrium. Moreover, the tax

induces some users who are engaged in standard patching practices under the status quo to forgo

their patching rights. This characteristic can be seen in (23); the optimal tax τ∗ increases as πaαa

increases because a social planner needs to further incentivize users of standard patching to adopt

automated patching solutions when these solutions are associated with increased instability. The

planner essentially achieves this by increasing the cost of patching rights to these users. Although

some consumers switch away from automated patching in the status quo to being unpatched as

discussed above, the movement of consumers who elect for standard patching under the status quo

toward automated patching yields a larger population of users of automated patching in aggregate

under the optimal tax. In the following proposition, we formally state these findings.

Proposition 6 For sufficiently high πsαs and cp−πaαa<ca<cp(1−πaαa), optimally taxed patch-

ing rights decrease the size of the unpatched population by πaαa(1−πaαa)
ca(πsαs)2

+Ja such that SLP <SLSQ,

increase the size of the automated patching population by 1
πsαs

+Kk such that ALP >ALSQ, and
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Figure 3: How the optimal tax on patching rights and associated unpatched usage in equilibrium
are influenced by the effective security loss factor. Panel (a) illustrates the size of the unpatched
population under both the status quo and in the presence of the tax. The optimal tax is depicted
in panel (b). The parameter values are αa=3.5, πa=0.1, cp=0.5, and ca=0.2.

increase social welfare by πaαa
2(πsαs)2

+ Jb.
5

By Lemmas 4 and 5, the consumer market structure induced in equilibrium under the conditions

of Proposition 6 is 0<vb<va<vp< 1 under both the status quo and optimally configured tax.

Proposition 6 demonstrates that as the effective security loss factor increases, the tax has a relatively

larger impact on increasing automated patching behavior in comparison to reducing unpatched

behavior. Notably, as the effective security loss factor grows quite large, users have a significant

incentive not to remain unpatched even under the status quo which limits the marginal benefit of a

tax. However, when the effective security loss factor has a moderate to moderately high magnitude,

a tax can have an even greater impact on security risk.

Figure 3 illustrates both the equilibrium unpatched population size, u(σ∗), and the optimal

tax, τ∗, as a function of the effective security loss factor. First, we discuss the status quo. In

panel (a), the upper curve represents the size of the unpatched population in equilibrium under the

status quo. As πsαs initially increases, unpatched users with higher valuations switch to automated

5Similarly, we will represent constants that are of order O
(
1/(πsαs)

3
)
using the notation J and an enumerated

subscript.
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patching in order to bear relatively lower security risk. As πsαs increases further, unpatched users

with lower valuations begin to drop out of the market, and the size of the unpatched population

shrinks as is depicted. The impact of a tax on patching rights on the unpatched population is

reflected by the lower curve in panel (a). Starting from the right-hand portion, Region (III) of

panel (a) is consistent with Proposition 6 and illustrates how all consumer market segments are

represented both under the status quo and under taxed patching rights. Panel (b) demonstrates

how the optimal tax is a modest one and leads to a modest reduction in unpatched usage as seen

in panel (a). As πsαs decreases into Region (II) and then (I), Figure 3 demonstrates how a much

more significant tax is required to address mis-aligned incentives and induce a substantial reduction

in unpatched usage.

Regions (I) and (II) illustrate what can happen when the effective security loss factor is not

too high. Despite the consumer market structure being characterized by 0<vb<va<vp< 1 under

the status quo, the optimal tax in these regions essentially precludes the existence of a segment

of consumers who prefer standard patching in equilibrium. To see why, we begin by discussing

Region (I) where the optimal tax induces the structure 0<va<vb< 1. As can be seen in panel (b)

of Figure 3, the optimal tax is set at a high level (in fact, higher than ca) to provide incentives

for consumers to forgo patching rights. In response, all consumers who were unpatched under the

status quo either exit the market or choose the automated patching option. However, because

of the large reduction in the unpatched population, the security risk is low and consumers with

higher valuations who would be patching under the status quo now find it preferable to remain

unpatched and bear the low, expected security losses in equilibrium. These consumers pay the tax

to retain patching rights but need not exercise these rights. Instead, they are in spirit paying the

tax to reduce security risk and hence the costly burden of standard patching processes. Notably,

as panel (b) indicates, as the effective security loss factor increases through Region (I), a higher

tax is needed to reduce unpatched usage by low valuation users and achieve these effects.

However, examining Region (II) in both panels of Figure 3, at some point the tax required

is quite high and becomes too detrimental to total software usage in equilibrium; social welfare

can be further improved by a different strategy here. In particular, in that with higher potential

security risk, high valuation consumers prefer not to be exposed to higher valuation-dependent

losses, more surplus would be created if a planner expands usage in the market to lower valuation

consumers and provides incentives for high valuation users to switch to the automated patching

option. In this case, a lower tax optimally expands usage and benefits welfare, while still limiting
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(albeit, to a lesser extent) the amount of unpatched behavior and associated expected security

losses. In equilibrium, the consumer market structure is characterized by 0<vb<va< 1; together,

the security risk associated with expanded usage and the tax on patching rights are both sufficiently

large that high valuation consumers prefer neither to pay the tax nor risk security losses. Instead,

they elect for automated patching. In fact, the highest valuation consumers (who were incurring

cost cp under the status quo by standard patching) now incur cost ca+πaαav > cp under automated

patching but do not pay the tax τ .

As we discussed above, the value of taxing patching rights diminishes in security risk because it

becomes more incentive compatible for users to choose patching and automated patching options.

Thus, as the effective security loss factor increases even further, from a welfare perspective it is

preferable for high valuation users to maintain patching rights and patch to prevent large security

losses. In this case, a planner should set a small tax to encourage these users to retain rights and

patch while also providing a modest disincentive for low valuation users to remain unpatched. The

tax and its impact on an already smaller unpatched population is illustrated in Region (III) of

Figure 3.

Having discussed parameter regions that correspond more closely to today’s computing envi-

ronment, we turn our attention to a region likely to unfold in the future when automated patching

technology improves and becomes a less costly endeavor from the perspective of users. In Figure

4, we depict this case and illustrate how a larger tax on patching rights is utilized to significantly

reduce unpatched usage in equilibrium. The following proposition formalizes our findings for a low

cost of automated patching.

Proposition 7 For sufficiently high πsαs and as automated patching solutions become more cost-

effective to users, patching rights should be taxed relatively more heavily. Further,

(i) if (πaαa)2

1−πaαa
<ca≤ cp − πaαa, then optimally taxed patching rights decrease the size of the un-

patched population by 1
2πsαs

+Kl such that SLP <SLSQ, decrease the size of the automated

patching population by 1
4(1−πaαa)πsαs

+Km such that ALP <ALSQ, and increase social welfare

by ca
4(1−πaαa)πsαs

+Kn ;

(ii) if ca≤ min
(
cp − πaαa,

(πaαa)2

1−πaαa

)
, then optimally taxed patching rights decrease the size of

the unpatched population by 2−ca−πaαa
2πsαs

+ Ko such that SLP <SLSQ if and only if ca >

2
(
1−
√

1−πaαa(1−πaαa)
)
−πaαa(1−πaαa)

1−πaαa
, decrease the size of the automated patching population

by ca+πaαa
2πsαs

+Kp such that ALP <ALSQ, and increase social welfare by (ca+πaαa)2

4πsαs
+Kq .
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Figure 4: How the optimal tax on patching rights and associated unpatched usage in equilibrium
are influenced by the effective security loss factor. Panel (a) illustrates the size of the unpatched
population under both the status quo and in the presence of the tax. The optimal tax is depicted
in panel (b). The parameter values are αa = 3.5, πa = 0.1, cp = 0.5, and ca = 0.1.

As Proposition 7 indicates, the socially optimal tax in this case is structured with a different

concern in mind. In particular, Lemma 4 establishes that when ca becomes lower, the equilibrium

consumer market structure under the status quo is characterized by 0<vb<va< 1 which is to say

that consumers no longer find standard patching necessary due to the improvement in automated

patching technology. In this case, parts (ii) and (iii) of Lemma 5 demonstrate that an optimally

configured tax on patching rights will either induce the same consumer market structure or even

0<va<vb< 1 if ca is sufficiently reduced. In neither case can the planner induce standard patching

behavior despite the effective security loss factor potentially being high. Therefore, in contrast to

our findings in Proposition 6, the role of the optimal tax here is fundamentally different. Because

high valuation users can have natural incentives to choose automated patching and thus need not

be compelled to retain patching rights, the social planner has the ability to leverage high taxes

on patching rights without affecting their behavior. For example, these consumers will choose not

to retain patching rights under the conditions of part (i) of Proposition 7, in that 0<vb<va< 1

is induced in equilibrium. As the proposition states, this large tax helps to significantly reduce
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unpatched usage by lower valuation consumers and increase social welfare. Because a large mass of

lower valuation users are pushed out of the market by the tax, some users of the automated patching

option under the status quo now switch to being unpatched, hence the size of the automated

patching population also shrinks relative to the status quo.

More generally, we find that as automated patching solutions improve (across regions), a social

planner should tend to utilize larger taxes to disincentivize the retainment of patching rights and

significantly throttle unpatched usage. Interestingly, part (ii) of Proposition 7 establishes that if

this technology improves sufficiently, large taxes will actually result in higher valuation consumers

strategically retaining patching rights (despite the premium) and remaining unpatched. In this

case, they benefit from the fact that only a small mass of consumers will find this behavior in their

best interest which, in turn, limits the expected security losses they will incur. In this case, as can

be seen in part (iii) of Lemma 5, the optimal tax is larger than ca. Despite this outcome being an

improvement to social welfare, because higher valuation users are the ones incentivized to remain

unpatched, expected security losses can be increased relative to the status quo.

5 Concluding Remarks

In the current state of affairs, both software end users and system administrators are faced with a

barrage of security patches arriving weekly. However, because users are endowed with the right to

choose whether or not to apply these security updates, a large portion of the user base ultimately

chooses to remain unpatched, leaving their systems prone to security attacks. These users contribute

to a security externality that affects all users of the software which degrades its value and has a

negative impact on its profitability. In this paper, we propose an improved business model where

a software vendor differentiates its product based on patching rights. In this model, the right to

choose whether or not to patch is no longer endowed. Instead, consumers who prefer to retain

these rights and hence control of the patching status of their systems must pay a relative premium.

Consumers who prefer to relinquish these rights have their systems automatically updated by the

vendor and, in exchange, pay a discounted price. The market segmentation induced carries a

reduction in security risk and an increase in profitability to the vendor. In this way, the pricing

of patching rights can be a beneficial marketing strategy driving revenue growth; a vendor can

market its product offerings as being more secure because its differentiated products incentivize

better security behaviors by users.
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We find that a priced patching rights strategy is a very effective way to improve software security.

We characterize the optimal manner in which to price these rights and demonstrate that it leads

to a significant increase in the profits of firms producing proprietary software. Moreover, the size

of unpatched users decreases in equilibrium under priced patching rights which, in turn, tends to

lead to a decrease in losses associated with security attacks on systems running the software. In

some cases, the firm may raise both the price of the premium version with patching rights and the

price of the “discounted” version without patching rights relative to the optimal price offered under

the status quo. This demonstrates how a software firm can extract value from a combination of

improved automated patching technology and a pricing strategy that incentivizes better security

outcomes that are valued by consumers. We establish that the pricing of patching rights can

negatively affect social welfare when usage in the market significantly contracts, but in many cases

welfare improves as a result of the lower resulting security risk.

Unlike with proprietary software, merely the inclusion of an automated patching option with

open-source software often does not reduce the size of the unpatched population. In fact, under

a high effective security loss factor, the size of the unpatched population is unchanged because

consumers with lower valuations enter the market, re-establishing the externality. However, its

inclusion does lead to a greater prevalence of automated patching as an equilibrium strategy across

software classes (comparing OSS to proprietary software). Because of the large unpatched popula-

tion that remains despite having an automated patching option, there is arguably an even greater

need for patching rights to be managed in the OSS domain. We find that a tax on patching rights

can be quite effective, and we characterize how it should be structured. In particular, when auto-

mated patching costs are comparable to standard patching costs and all segments are represented

under the status quo, the optimal tax tends to be higher under a moderate effective security loss

factor and more modest under a higher one. In this case, the tax is effective at reducing un-

patched populations, expanding automated patching and achieving reduced security losses. When

automated patching technology improves and costs become even smaller, a relatively large tax is

warranted and leads to both a reduced unpatched population and a reduced automated patching

population, in comparison to the status quo. Because of the significant drop in unpatched usage, in

this case it is possible for expected security losses to increase when higher valuation consumers are

the ones who become incentivized to remain unpatched in equilibrium. Nevertheless, the taxing of

patching rights leads to a substantial improvement in social welfare.

We employ asymptotic analysis which is commonly employed in microeconomic studies. Its use
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can be expected here due to the complexity of the game and corresponding equilibrium charac-

terization (some examples of studies using asymptotic analysis include Li et al. 1987, Laffont and

Tirole 1988, MacLeod and Malcomson 1993, Pesendorfer and Swinkels 2000, Muller 2000, Tunca

and Zenios 2006, August and Tunca 2006, Pei et al. 2011 among many others). Miller (2006) and

Cormen et al. (2009) provide comprehensive treatments of the mathematical foundation under-

lying asymptotic analysis. In this study, we have characterized regions on which the results and

implications related to our primary research questions arise. Because of model complexity in this

setting, some boundaries of these regions do not have explicit functional forms. These boundaries

would normally be implicit and would be characterized accordingly. However, the objective of the

analysis is the identification of regions of applicability in terms of parameter characteristics, which

is the focus of our formalized results.

Under priced patching rights, the consumers who pay a premium to retain these rights need

no additional monitoring by the proprietary vendor or OSS provider to examine patching status.

However, consumers who benefit financially in exchange for these rights must have their systems

automatically updated per the contract. This requires a careful implementation that entails the

monitoring of systems. First, the updating of systems need not be in full control by the vendor

nor instantaneous to derive the benefits of this policy. For example, consumers can be given a 24

hour window to apply patches before they are forcefully installed. This gives users some leeway

operationally. Second, a user can always disconnect her system from the network to avoid the

deployment of automated security updates. In this case, although the patches are not installed,

the externality imposed by this unpatched system is also removed because the system is no longer

connected to the network.
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Appendix

1 Proprietary Software: Status Quo

Lemma A.1 Under the status quo, i.e., δ=1, the complete threshold characterization of the con-

sumer market equilibrium is as follows:

(I) (0 < vb < 1), where vb =
1
2 +

−1+
√

(1−πsαs)2+4pπsαs

2πsαs
:

(A) 2ca + 2πaαa +
√

(1− πsαs)2 + 4pπsαs ≥ 1 + πsαs

(B) (1− πaαa)(ca + pπaαa)− πsαs(ca + p)(1− ca − p− πaαa) ≥ 0

(C) Either 1 + πsαs ≤ 2cp, or

(D) 1 + πsαs > 2cp and cp − (1− cp − p)πsαs ≥ c2p

(II) (0 < vb < va < 1), where va is the most positive root of the cubic f4(x) , c2a + ca(−1 +

2πaαa)x+ x3πsαs(1− πaαa)− x2(πaαa(1− πaαa) + πsαs(ca + p)) and vb =
pva

−ca+va(1−πaαa)
:

(A) c2a − (1− πaαa)(πaαa − πsαs)− ca(1− 2πaαa + πsαs) > πsαsp

(B) πaαa ≤ cp − ca

(III) (0 < vb < va < vp < 1), where va is the most positive root of f4(x) and vb =
pva

−ca+va(1−πaαa)

and vp =
cp−ca
πaαa

:

(A) cp < ca + πaαa

(B) cp(1− πaαa) > ca

(C) cp(πaαa)
2(−ca + cp(1− πaαa)) + πsαs(−ca + cp)

2(ca − cp(1− πaαa) + πaαap) < 0

(D) πsαs(ca − cp)
2(ca − cp(1− πaαa) + πaαap) < cp(πaαa)

2(ca − cp(1− πaαa))

(IV) (0 < vb < vp < 1), where vb is the most positive root of f3(x) and vp =
cpvb
vb−p :

(A) c2p > cp − (1− cp − p)πsαs

(B) (1− πaαa)(ca + πaαap)
2 + πsαs(ca + p)2(ca − cp(1− πaαa) + πaαap) ≥ 0

(C) Either ca − cp(1− πaαa) ≥ 0, or

(D) ca − cp(1 − πaαa) < 0 and cp(1 − πaαa) > ca and cp(πaαa)
2(−ca + cp(1 − πaαa)) +

πsαs(−ca + cp)
2(ca − cp(1− πaαa) + πaαap) ≥ 0

Proof of Lemma A.1: This is proven as a sub-case in the proof of Lemma A.2. �
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Proof of Lemma 2: Technically, we prove the existence of α̃1 such that for αs > α̃1, p
∗ is set so

that

1. if cp − πaαa < ca < 1 − πaαa − (1 − cp)
√
1− πaαa, then σ∗(v) is characterized by 0 < vb <

va < vp < 1 under optimal pricing, and

2. if ca > 1 − πaαa − (1 − cp)
√
1− πaαa, then σ∗(v) is characterized by 0 < vb < vp < 1 under

optimal pricing.

Because cp − πaαa < ca, part (II) of Lemma A.1 cannot be satisfed. We consider the three,

remaining possibilities. Suppose 0 < vb < 1. By part (I) of Lemma A.1, we obtain vb = 1− 1−p
πsαs

+
(1−p)p
(πsαs)2

+O
(

1
(πsαs)3

)
which upon substitution into (6) yields

Π(p) =
1− 2p

πsαs
− p(2− 3p)

(πsαs)2
− p(2− (9− 8p)p)

(πsαs)3
+O

(
1

(πsαs)4

)
. (A.1)

Its unconstrained maximizer is given by

pN =
1

2
− 1

8πsαs
+

1

16(πsαs)2
+O

(
1

(πsαs)3

)
. (A.2)

Substituting (A.2) into (A.1), we obtain

ΠN =
1

4πsαs
− 1

8(πsαs)2
+O

(
1

(πsαs)3

)
. (A.3)

Suppose 0<vb<va<vp< 1 is induced. By part (III) of Lemma A.1, we obtain vb =
ca+p

1−πaαa
−

ca(ca+pπaαa)
(ca+p)2πsαs

+ cap(1−πaαa)(2ca−(ca−p)πaαa)(ca+pπaαa)
(ca+p)5(πsαs)2

+ O
(

1
(πsαs)3

)
, which upon substitution into (6)

yields

Π(p) =
p(1− πaαa − ca − p)

1− πaαa
+

cap(ca + pπaαa)

(ca + p)2πsαs
−

cap
2(1− πaαa)(2ca − (ca − p)πaαa)(ca + pπaαa)

(ca + p)5(πsαs)2
+O

(
1

(πsαs)3

)
. (A.4)

Its unconstrained maximizer is given by

pA =
1

2
(1− πaαa − ca) +

4(c2a(1− πaαa)(ca − 1
2(1− πaαa − ca)(1− 2πaαa)))

(1− πaαa + ca)3πsαs
+O

(
1

(πsαs)2

)
.

(A.5)

Substituting (A.5) into (A.4), we obtain

ΠA =
(1− πaαa − ca)

2

4(1− πaαa)
+

ca(1− πaαa − ca)(ca(2− πaαa) + πaαa(1− πaαa))

(1− πaαa + ca)2πsαs
+O

(
1

(πsαs)2

)
.

(A.6)
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Lastly, suppose 0<vb<vp< 1 is induced. By part (IV) of Lemma A.1, we obtain vb = cp + p−
c2p

(cp+p)2πsαs
+

2c3pp

(cp+p)5(πsαs)2
+O

(
1

(πsαs)3

)
, which upon substitution into (6) yields

Π(p) = p(1− cp − p) +
c2pp

(cp + p)2πsαs
−

2c3pp
2

(cp + p)5(πsαs)2
+O

(
1

(πsαs)3

)
. (A.7)

Its unconstrained maximizer is given by

pP =
1− cp

2
−

2c2p(1− 3cp)

(1 + cp)3πsαs
−

16c3p(−3 + 8cp − 5c2p + 8c3p)

(1 + cp)7(πsαs)2
+O

(
1

(πsαs)3

)
. (A.8)

Substituting (A.8) into (A.7), we obtain

ΠP =
1

4
(1− cp)

2 +
2(1− cp)c

2
p

(1 + cp)2πsαs
+O

(
1

(πsαs)2

)
. (A.9)

Comparing (A.3) with either (A.6) or (A.9), we find that (A.3) is dominated by the other two

profits when αs is sufficiently large (say, αs > α̂1, for some α̂1). Then using (A.5) with Lemma A.1,

we find that, for sufficiently large αs (αs > α̂2, for some α̂2), the optimal price of this case indeed

induces the correct market structure when cp − πaαa < ca <
(2cp−πaαa)(1−πaαa)

2−πaαa
. Similarly, using

(A.8) with Lemma A.1, we find that, for sufficiently large αs (αs > α̂3, for some α̂3), the optimal

price of this case indeed induces the correct market structure when ca > cp − 1
2(1 + cp)πaαa. Let

α̃1 be the max of these α̂1, α̂2, and α̂3. Then for αs > α̃1, if ca > cp − πaαa, we have that (A.3) is

dominated by the other two profits, at least one of which has its profit-maximizing solution inducing

the market structure it represents. Moreover, since cp − 1
2(1 + cp)πaαa <

(2cp−πaαa)(1−πaαa)
2−πaαa

, there

will be a region in which both interior maximizers induce their corresponding cases.

Comparing (A.6) with (A.9), we see that (A.6) has greater profit when 2ca(1−πaαa) < c2a+(1−
πaαa)(cp(2−cp)−πaαa), which can be written as ca < 1−πaαa−(1−cp)

√
1− πaαa. Note that for any

cp ∈ [0, 1], we have that cp− 1
2(1+cp)πaαa < 1−πaαa−(1−cp)

√
1− πaαa <

(2cp−πaαa)(1−πaαa)
2−πaαa

from

πaαa ∈ (0, 1). Therefore, for αs > α̃1, if cp−πaαa < ca ≤ 1−πaαa−(1−cp)
√
1− πaαa, then σ∗(v) is

characterized by 0<vb<va<va< 1 under optimal pricing, and if ca > 1−πaαa−(1−cp)
√
1− πaαa,

then σ∗(v) is characterized by 0<vb<vp< 1 under optimal pricing. �
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2 Proprietary Software: Patching Rights Priced

Lemma A.2 Under priced patching rights, the complete threshold characterization of the consumer

market equilibrium is as follows:

(I) (0 < va < 1), where va = δp+ca
1−πaαa

:

(A) (1− δ)p ≥ πaαa + ca

(II) (0 < va < vb < 1), where va = δp+ca
1−πaαa

and vb =
1
2 +

−πaαa+
√

(πaαa−πsαs)2+4πsαs((1−δ)p−ca)

2πsαs
:

(A) πaαa + ca > (1− δ)p > ca

(B) (2πsαs)
(

ca+δp
1−πaαa

)
+ πaαa − πsαs <

√
(πaαa − πsαs)2 + 4πsαs((1− δ)p− ca)

(C) Either πaαa + πsαs ≤ 2cp, or

(D) πaαa + πsαs > 2cp and (1− δ)p ≥ ca +
(cp−πaαa)(cp−πsαs)

πsαs

(III) (0 < va < vb < vp < 1), where va = δp+ca
1−πaαa

and vb is the most positive root of f1(x) ,
(ca − (1− δ)p+ xπaαa)

2 + x2πsαs(ca − cp − (1− δ)p+ xπaαa), and vp =
cpvb

ca−(1−δ)p+vbπaαa
:

(A) ca +
(cp−πaαa)(cp−πsαs)

πsαs
> (1− δ)p > ca

(B) πaαa > cp

(C) Either (1− δ − πaαa)p ≥ ca, or

(D) (1 − δ − πaαa)p < ca, and πsαs(ca + δp)2(ca − cp(1 − πaαa) − (1 − δ − πaαa)p) + (1 −
πaαa)(ca − (1− δ − πaαa)p)

2 < 0

(IV) (0 < vb < 1), where vb =
1
2 +

−1+
√

(1−πsαs)2+4pπsαs

2πsαs
:

(A) 2ca − 2(1− δ)p+ 2πaαa +
√

(1− πsαs)2 + 4πsαsp ≥ 1 + πsαs

(B) (1− πaαa)(ca − (1− δ − πaαa)p)− πsαs(ca + δp)(1− ca − δp− πaαa) ≥ 0

(C) Either 1 + πsαs ≤ 2cp, or

(D) 1 + πsαs > 2cp and cp − (1− cp − p)πsαs ≥ c2p

(V) (0 < vb < va < 1), where va is the most positive root of the cubic f2(x) , c2a − 2ca(1− δ)p+

((1−δ)p)2+x(ca−(1−δ)p)(−1+2πaαa)+x3πsαs(1−πaαa)−x2(πaαa(1−πaαa)+πsαs(ca+pδ))

and vb =
pva

−ca+(1−δ)p+va(1−πaαa)
:

(A) (1− δ)p < ca

(B) c2a + ((1− δ)p)2 + (1− δ)p(1− 2πaαa)− (1− πaαa)(πaαa − πsαs)− ca(1 + 2(1− δ)p−
2πaαa + πsαs) > πsαsδp

(C) πaαa ≤ (1− δ)p+ cp − ca

(VI) (0 < vb < va < vp < 1), where va is the most positive root of f2(x) and vb =
pva

−ca+(1−δ)p+va(1−πaαa)

and vp =
cp−(ca−(1−δ)p)

πaαa
:

4



(A) (1− δ)p < ca

(B) cp + (1− δ)p < ca + πaαa

(C) cp(1− πaαa) + p(1− δ) > ca

(D) cp(πaαa)
2(−ca+cp(1−πaαa)+p(1−δ))+πsαs(−ca+cp+p(1−δ))2(ca−cp(1−πaαa)−

(1− δ − πaαa)p) < 0

(VII) (0 < vb < vp < 1), where vb is the most positive root of the cubic f3(x) , p2+x2(1−cpπsαs+

πsαsx)− px(2 + πsαsx) and vp =
cpvb
vb−p :

(A) ca > (1− δ − πaαa)p

(B) c2p > cp − (1− cp − p)πsαs

(C) (1−πaαa)(ca−(1−δ−πaαa)p)
2+πsαs(ca+δp)2(ca−cp(1−πaαa)−(1−δ−πaαa)p) ≥ 0

(D) Either ca − (1− δ)p− cp(1− πaαa) ≥ 0, or

(E) ca − (1− δ)p− cp(1− πaαa) < 0 and cp(1− πaαa) + (1− δ)p > ca, and cp(πaαa)
2(−ca +

cp(1−πaαa)+p(1−δ))+πsαs(−ca+cp+p(1−δ))2(ca−cp(1−πaαa)−(1−δ−πaαa)p) ≥ 0

Proof of Lemma A.2: First, we establish the general threshold-type equilibrium structure.

Given the size of unpatched user population u, the net payoff of the consumer with type v for

strategy profile σ is written as

U(v, σ),


v − p− cp if σ(v)= (B,P ) ;

v − p− πsαsuv if σ(v)= (B,NP ) ;

v − δp− ca − πaαav if σ(v)= (B,AP ) ;

0 if σ(v)= (NB,NP ) .

(A.10)

Note σ(v)= (B,P ) if and only if

v − p− cp ≥ v − p− πsαsuv ⇔ v ≥ cp
πsαsu

, and

v − p− cp ≥ v − δp− ca − πaαav ⇔ v ≥ (1− δ)p+ cp − ca
πaαa

, and

v − p− cp ≥ 0 ⇔ v ≥ cp + p,

which can be summarized as

v ≥ max

(
cp

πsαsu
,
(1− δ)p+ cp − ca

πaαa
, cp + p

)
. (A.11)

By (A.11), if a consumer with valuation v0 buys and patches the software, then every consumer

with valuation v > v0 will also do so. Hence, there exists a threshold vp ∈ (0, 1] such that for all

v ∈ V, σ∗(v)= (B,P ) if and only if v ≥ vp. Similarly, σ(v) ∈ {(B,P ), (B,NP ), (B,AP )}, i.e., the
consumer purchases one of the alternatives, if and only if

v − p− cp ≥ 0 ⇔ v ≥ cp + p, or

5



v − p− πsαsuv ≥ 0 ⇔ v ≥ p

1− πsαsu
, or

v − δp− ca − πaαav ≥ 0 ⇔ v ≥ δp+ ca
1− πaαa

,

which can be summarized as

v ≥ min

(
cp + p,

p

1− πsαsu
,
δp+ ca
1− πaαa

)
. (A.12)

Let 0 < v1 ≤ 1 and σ∗(v) ∈ {(B,P ), (B,NP ), (B,AP )}, then by (A.12), for all v > v1,

σ∗(v) ∈ {(B,P ), (B,NP ), (B,AP )}, and hence there exists a v ∈ (0, 1] such that a consumer with

valuation v ∈ V will purchase if and only if v ≥ v.

By (A.11) and (A.12), v ≤ vp holds. Moreover, if v < vp, consumers with types in [v, vp] choose

either (B,NP ) or (B,AP ). A purchasing consumer with valuation v will prefer (B,NP ) over

(B,AP ) if and only if

v − p− πsαsuv > v − δp− ca − πaαav ⇔ v (πaαa − πsαsu) > (1− δ)p− ca. (A.13)

This inequality can be either v > (1−δ)p−ca
πaαa−πsαsu

or v < (1−δ)p−ca
πaαa−πsαsu

, depending on the sign of

πaαa−πsαsu. Consequently, there can be two cases for (B,NP ) and (B,AP ) in equilibrium: first,

there exists vu ∈ [v, vp] such that σ(v) = (B,NP ) for all v ∈ [vu, vp), and σ(v) = (B,AP ) for all

v ∈ [vd, vu) where vd = v. In the second case, there exists vd ∈ [v, vp] such that σ(v) = (B,AP )

for all v ∈ [vd, vp), and σ(v) = (B,NP ) for all v ∈ [vu, vd), where vu = v. If πaαa − πsαsu = 0,

then depending on the sign of (1 − δ)p − ca, all consumers unilaterally prefer either (B,NP ) or

(B,AP ); e.g., if (1−δ)p > ca, all consumers prefer (B,AP ), and if (1−δ)p < ca, then all consumers

prefer (B,NP ). Finally, if (1− δ)p = ca, then all consumers are indifferent between (B,NP ) and

(B,AP ), in which case only the size of the consumer population u matters in equilibrium, i.e.,

πaαa − πsαsu = 0 in equilibrium. Technically, there are multiple equilibria in this case; however,

utility of each consumer and the vendor profit are the same in all equilibria. So, without loss of

generality, we focus on the threshold-type equilibrium in this case. In summary, we have established

the threshold-type consumer market equilibrium structure.

Next, we characterize in more detail each outcome that can arise in equilibrium, as well as the

corresponding parameter regions. For Case (I), in which all consumers who purchase choose the

automated patching option, i.e., 0 < va < 1, based on the threshold-type equilibrium structure, we

have u = 0. We prove the following claim related to the corresponding parameter region in which

case (I) arises.

Claim 1 The equilibrium that corresponds to case (I) arises if and only if the following condition

is satisfied:

(1− δ)p ≥ πaαa + ca. (A.14)

In this case, the threshold for the consumer indifferent between purchasing the automated

patching option and not purchasing at all, va, satisfies

va =
δp+ ca
1− πaαa

. (A.15)
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For this to be an equilibrium, we need 0 < va < 1, type v = 1 prefers (B,AP ) over (B,P ),

and v = 1 prefers (B,AP ) over (B,NP ). Note that type v = 1 preferring (B,AP ) over (B,P )

implies that v < 1 does the same, by (A.11). Also, type v = 1 preferring (B,AP ) over (B,NP )

implies that all v < 1 does too. This is because u = 0, and so πaαa − πsαsu > 0, which implies

that consumers of higher types prefer (B,NP ) over (B,AP ) by (A.13). Moreover, type v = va
preferring (NB,NP ) over both (B,NP ) and (B,P ) implies that all v < va do the same, by (A.12).

We always have va > 0 from our model assumptions, namely πaαa < 1. To have va < 1, a

necessary and sufficient condition is δp+ ca + πaαa < 1.

For v = 1 to weakly prefer (B,AP ) over (B,P ), a necessary and sufficient condition is 1− δp−
ca − πaαa ≥ 1− p− cp, which reduces to (1− δ)p ≥ πaαa + ca − cp.

For v = 1 to weakly prefer (B,AP ) over (B,NP ), a necessary and sufficient condition is

1 − δp − ca − πaαa ≥ 1 − p − πsαsu, which reduces down to (1 − δ)p ≥ πaαa + ca, using u = 0 in

equilibrium.

Note that the condition δp+ca+πaαa < 1 is redundant, given (1−δ)p ≥ πaαa+ca since the first

condition can be written as 1− δp > ca+πaαa. Since p < 1, it follows that the (1− δ)p ≥ πaαa+ ca
implies 1− δp > ca + πaαa. So case (I) arises if and only if the condition in (A.14) occurs. �

Next, for case (II), in which there are no consumers purchasing (B,P ) but the upper tier of

consumers are unpatched, i.e., 0 < va < vb < 1, we have u = 1 − vb. Following the same steps

as before, we prove the following claim related to the corresponding conditions for which case (II)

arises.

Claim 2 The equilibrium that corresponds to case (II) arises if and only if the following conditions

are satisfied:

πaαa + ca > (1− δ)p > ca and

(2πsαs)

(
ca + δp

1− πaαa

)
+ πaαa − πsαs <

√
(πaαa − πsαs)2 + 4πsαs((1− δ)p− ca) and{

(πaαa + πsαs ≤ 2cp) or

(
πaαa + πsαs > 2cp and (1− δ)p ≥ ca +

(cp − πaαa)(cp − πsαs)

πsαs

)}
.

(A.16)

In this case, the threshold for the consumer indifferent between purchasing the automated

patching option and not purchasing at all, va, again satisfies

va =
δp+ ca
1− πaαa

. (A.17)

The threshold for the consumer indifferent between being unpatched an purchasing the auto-

mated patching option, vb, satisfies

vb =
(1− δ)p− ca
πaαa − πsαsu

. (A.18)

Using u = 1−vb, we find that vb solves a quadratic equation. To find which root is the solution,

we note that vb must satisfy πaαa − πsαsu > 0 since higher types choose (B,NP ) over (B,AP ) by

7



(A.13). This implies (1− δ)p− ca > 0 in order for vb > 0. Using this, we find that the root of the

quadratic which specifies vb is given by

vb =
πsαs − πaαa +

√
(πaαa − πsαs)2 + 4πsαs((1− δ)p− ca)

2πsαs
. (A.19)

For this to be an equilibrium, we need 0 < va < vb < 1 and type v = 1 prefers (B,NP ) over

(B,P ). Note that type v = 1 preferring (B,NP ) over (B,P ) implies that v < 1 does the same, by

(A.11). This also implies that vb prefers (B,AP ) over (B,P ), so that v < vb also prefer (B,AP )

over (B,P ), again by (A.11). Moreover, type v = va preferring (NB,NP ) over both (B,NP ) and

(B,P ) implies that all v < va do the same, by (A.12).

Again, we always have va > 0 from our model assumptions, namely πaαa < 1. For vb < 1, an

equivalent condition is (1− δ)p < ca + πaαa.

For va < vb, it is equivalent to require
√

(πaαa − πsαs)2 + 4πsαs((1− δ)p− ca) > (2πsαs)
(

ca+δp
1−πaαa

)
+

πaαa − πsαs.

For type v = 1 to weakly prefer (B,NP ) over (B,P ), we equivalently have the condition

πaαa + πsαs − 2cp ≤
√

(πaαa − πsαs)2 + 4πsαs((1− δ)p− ca). This can be broken up into two

cases, depending on whether πaαa + πsαs − 2cp ≤ 0, and simplified in (A.16). �

Next, for case (III), in which all segments are represented and the middle tier is unpatched,

i.e., 0 < va < vb < vp < 1, we have u = vp − vb. Following the same steps as before, we prove the

following claim related to the corresponding parameter region in which case (III) arises.

Claim 3 The equilibrium that corresponds to case (III) arises if and only if the following conditions

are satisfied:

ca +
(cp − πaαa)(cp − πsαs)

πsαs
> (1− δ)p > ca and πaαa > cp and{(

(1− δ − πaαa)p ≥ ca

)
or

(
(1− δ − πaαa)p < ca and

πsαs(ca + δp)2(ca − cp(1− πaαa)− (1− δ − πaαa)p) + (1− πaαa)(ca − (1− δ − πaαa)p)
2 < 0

)}
.

(A.20)

In this case, the threshold for the consumer indifferent between purchasing the automated

patching option and not purchasing at all, va, again satisfies

va =
δp+ ca
1− πaαa

. (A.21)

To solve for the thresholds vb and vp, using u = vp − vb, note that they solve

vb =
(1− δ)p− ca

πaαa − πsαs(vp − vb)
, and (A.22)

vp =
cp

πsαs(vp − vb)
. (A.23)
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From (A.22), we have πsαs(vp − vb) = πaαa − (1−δ)p−ca
vb

, while from (A.23), we have πsαs(vp −
vb) =

cp
vp
. Equating these two expressions and solving for vp in terms of vb, we have

vp =
cpvb

ca − (1− δ)p+ vbπaαa
. (A.24)

Plugging this expression for vp into (A.23) and noting that ca − (1− δ)p+ vbπaαa > 0 in order

for vp > 0, we find that vb must be a zero of the cubic equation:

f1(x) , (ca − (1− δ)p+ xπaαa)
2 + x2πsαs(ca − cp − (1− δ)p+ xπaαa). (A.25)

To find which root of the cubic vb must be, first note that πaαa − πsαsu > 0 for consumers of

higher valuation to prefer (B,NP ) over (B,AP ) by (A.13). From that, we have that (1−δ)p−ca > 0

in order for vb > 0. To pin down the root of the cubic, note that the cubic’s highest order term

is πsαsπaαax
3, so lim

x→−∞
f1(x) = −∞ and lim

x→∞
f1(x) = ∞. We find f1(0) = ((1 − δ)p − ca)

2 > 0,

f1

(
(1−δ)p−ca

πaαa

)
= − cpπsαs((1−δ)p−ca)2

(πaαa)2
< 0, and f1

(
(1−δ)p−ca+cp

αa

)
= c2p > 0, while 0 < (1−δ)p−ca

πaαa
<

(1−δ)p−ca+cp
αa

.

We note that from (A.22), we have that vb >
(1−δ)p−ca

πaαa
, so it follows that vb is the largest root

of the cubic, lying between (1−δ)p−ca
πaαa

and
(1−δ)p−ca+cp

αa
. Then using (A.24), we solve for vp.

For this to be an equilibrium, a necessary and sufficient condition is 0 < va < vb < vp < 1.

This tells us that all v ∈ [vp, 1] have the same preferences and will purchase (B,P ), all v ∈ [vb, vp)

have the same preferences and will purchase (B,NP ), and all v ∈ [va, vb) have the same preferences

and will purchase (B,AP ). Finally, all v < va have the same preferences and will not purchase in

equilibrium.

For vp < 1, using (A.24), a necessary and sufficient condition for this to hold is (1− δ)p− ca <

vb(πaαa − cp). Since (1 − δ)p − ca > 0 (again, from vb > 0), we need πaαa > cp. To have

vb >
(1−δ)p−ca
πaαa−cp

, a necessary and sufficient condition is that f1

(
(1−δ)p−ca
πaαa−cp

)
< 0 so that the third root

of f1(x) is greater than
(1−δ)p−ca
πaαa−cp

. Omitting the algebra, this simplifies to ca +
(cp−πaαa)(cp−πsαs)

πsαs
>

(1− δ)p.

For vb < vp, using (A.24), it is equivalent to have vb <
(1−δ)p−ca+cp

πaαa
. A necessary and sufficient

condition for this is that f1

(
(1−δ)p−ca+cp

πaαa

)
> 0 so that the third root of f1(x) is smaller than

(1−δ)p−ca+cp
πaαa

. But f1

(
(1−δ)p−ca+cp

πaαa

)
= c2P > 0, so this always holds.

For va < vb, using (A.15), an equivalent condition is vb >
δp+ca
1−πaαa

. Since vb >
(1−δ)p−cA

πaαa
(by the

construction of vb above as the largest root of the cubic), it follows that if
(1−δ)p−cA

πaαa
≥ δp+ca

1−πaαa
, then

we don’t need any extra conditions. The condition (1−δ)p−cA
πaαa

≥ δp+ca
1−πaαa

simplifies to (1−δ−πaαa)p ≥
ca. Otherwise, if (1− δ−πaαa)p < ca, then we need f1

(
δp+ca
1−πaαa

)
< 0 for va < vb. This condition is

πsαs(ca + δp)2(ca − cp(1− πaαa)− (1− δ− πaαa)p) + (1− πaαa)(ca − (1− δ− πaαa)p)
2 < 0, which

is given in (A.20). �

Next, for case (IV), in which all consumers who purchase are unpatched, i.e., 0 < vb < 1, we

have u = 1 − vb. Following the same steps as before, we prove the following claim related to the

corresponding parameter conditions for which case (IV) arises.
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Claim 4 The equilibrium that corresponds to case (IV) arises if and only if the following conditions

are satisfied:

2ca − 2(1− δ)p+ 2πaαa +
√
(1− πsαs)2 + 4πsαsp ≥ 1 + πsαs and

(1− πaαa)(ca − (1− δ − πaαa)p)− πsαs(ca + δp)(1− ca − δp− πaαa) ≥ 0 and{(
1 + πsαs ≤ 2cp

)
or

(
1 + πsαs > 2cp and cp − (1− cp − p)πsαs ≥ c2p

)}
. (A.26)

To solve for the threshold vb, using u = 1− vb, we solve

vb =
p

1− πsαs(1− vb
. (A.27)

For this to be an equilibrium, we must have that 1− πsαsu > 0, otherwise all consumers would

prefer (NB,NP ) over (B,NP ), which can’t happen in equilibrium. Using 1 − πsαs(1 − vb) > 0,

we find the right root of the quadratic for vb to be

vb =
1

2
+

−1 +
√

(1− πsαs)2 + 4pπsαs

2πsαs
. (A.28)

For this outcome to be an equilibrium, the necessary and sufficient conditions are that 0 < vb <

1, type v = 1 prefers (B,NP ) to both (B,AP ) over (B,P ), and v = vb to prefer (NB,NP ) over

(B,AP ).

For 0 < vb < 1, it is equivalent to have p < 1, which is a model assumption.

For type v = 1 to weakly prefer (B,NP ) to (B,AP ), using the same steps as in the previous

cases, the condition is 2ca − 2(1− δ)p+ 2πaαa +
√

(1− πsαs)2 + 4πsαsp ≥ 1 + πsαs.

For type v = 1 to weakly prefer (B,NP ) to (B,P ), omitting the algebra, the condition is

2cp +
√
(1− πsαs)2 + 4pπsαs ≥ 1 + πsαs. This can be split into two cases, depending on the sign

of 1 + πsαs − 2cp and given in (A.26).

Finally, for type v = vb to weakly prefer (NB,NP ) to (B,AP ), the condition is√
(1− πsαs)2 + 4pπsαs ≤ 1 + πsαs(−1+2ca+2pδ+πaαa)

1−πaαa
. Since the right hand-side is always non-

negative, πsαs > 0, and 0 < πaαa < 1, this can be rewritten as (1− πaαa)(ca − (1− δ − πaαa)p)−
πsαs(ca + δp)(1− ca − δp− πaαa) ≥ 0. �

Next, for case (V), in which the lower tier of purchasing consumers is unpatched while the upper

tier does automated patching, i.e., 0 < vb < va < 1, we have u = va − vb. Following the same steps

as before, we prove the following claim related to the corresponding parameter region in which case

(V) arises.

Claim 5 The equilibrium that corresponds to case (V) arises if and only if the following conditions

are satisfied:

(1− δ)p < ca and πaαa ≤ (1− δ)p+ cp − ca and

c2a+((1−δ)p)2+(1−δ)p(1−2πaαa)−(1−πaαa)(πaαa−πsαs)−ca(1+2(1−δ)p−2πaαa+πsαs) > πsαsδp.

(A.29)
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To solve for the thresholds vb and va, using u = va − vb, note that they solve

vb =
p

1− πsαs(va − vb)
, and (A.30)

va =
(1− δ)p− ca

πaαa − πsαs(va − vb)
. (A.31)

From (A.30), we have πsαs(va − vb) = 1 − p
vb
, while from (A.31), we have πsαs(va − vb) =

πaαa − (1−δ)p−ca
va

. Equating these two expressions and solving for vb in terms of va, we have

vb =
pva

−ca + (1− δ)p+ va(1− πaαa)
. (A.32)

Plugging this expression for vb into (A.30), we find that va must be a zero of the cubic equation:

f2(x) , c2a − 2ca(1− δ)p+ ((1− δ)p)2 + x(ca − (1− δ)p)(−1 + 2πaαa)+

x3πsαs(1− πaαa)− x2(πaαa(1− πaαa) + πsαs(ca + pδ)). (A.33)

To find which root of the cubic vb must be, first note that πaαa − πsαsu < 0 for consumers of

higher valuation to prefer (B,NP ) over (B,AP ) by (A.13). From that, we have that ca−(1−δ)p > 0

in order for va > 0. To pin down the root of the cubic, note that the cubic’s highest order term is

πsαs(1− πaαa)x
3, so lim

x→−∞
f2(x) = −∞ and lim

x→∞
f2(x) = ∞. We find f2(0) = ((1− δ)p− ca)

2 > 0

and f2

(
ca−(1−δ)p
1−πaαa

)
= −pπsαs((1−δ)p−ca)2

(1−πaαa)2
< 0.

We note that from (A.30), it follows that 1−πsαs(va−vb) > 0. It follows that πsαs(va−vb) < 1,

so that ca−(1−δ)p
πsαs(va−vb)−πaαa

> ca−(1−δ)p
1−πaαa

. Hence, by (A.31), we have that va > ca−(1−δ)p
1−πaαa

. Therefore, va

is the largest root of the cubic, lying past ca−(1−δ)p
1−πaαa

. Then using (A.32), we solve for vb.

For this to be an equilibrium, the necessary and sufficient conditions are 0 < vb < va < 1 and

type v = 1 prefers (B,AP ) over (B,P ). Type v = 1 preferring (B,AP ) over (B,P ) ensures v < 1

does so too, by (A.11). Moreover, since type v = va is indifferent between (B,AP ) and (B,NP ),

and since (B,AP ) is preferred over (B,P ), by transitivity, it follows that type va prefers (B,NP )

over (B,P ). It follows that v < va prefers (B,NP ) over (B,P ) as well by (A.11).

For va < 1, an equivalent condition for this to hold is f2(1) > 0, so that the third root of

f2(x) is less than 1. Since (1 − δ)p − ca < 0 (again, from vb > 0), this condition simplifies to

c2a+((1−δ)p)2+(1−δ)p(1−2πaαa)− (1−πaαa)(πaαa−πsαs)−ca(1+2(1−δ)p−2πaαa+πsαs) >

πsαsδp.

For va > vb, using (A.32), it is equivalent to require va > ca+pδ
1−πaαa

. Note that ca+pδ
1−πaαa

> ca−(1−δ)p
1−πaαa

,

so for this to happen, we need the condition f2(
ca+pδ
1−πaαa

) < 0, which simplifies to (1−δ)p−ca < pπaαa.

But this condition is already implied by the condition (1− δ)p− ca < 0.

For vb > 0, using (A.32), a necessary and sufficient condition for this to hold is va > ca−(1−δ)p
1−πaαa

.

But this holds by construction of va as the largest root of f2(x), so no additional conditions are

needed.

Finally, for type v = 1 to prefer (B,AP ) over (B,P ), a necessary and sufficient condition is

πaαa ≤ (1− δ)p+ cp − ca. The conditions above are summarized in (A.29). �
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Next, for case (VI), in which all segments are represented and the middle tier does automated

patching, i.e., 0 < vb < va < vp < 1, we have u = va − vb. Following the same steps as before, we

prove the following claim related to the corresponding parameter region in which case (VI) arises.

Claim 6 The equilibrium that corresponds to case (VI) arises if and only if the following conditions

are satisfied:

(1− δ)p < ca and cp + (1− δ)p < ca + πaαa and cp(1− πaαa) + p(1− δ) > ca and

cp(πaαa)
2(−ca + cp(1− πaαa) + p(1− δ))+

πsαs(−ca + cp + p(1− δ))2(ca − cp(1− πaαa)− (1− δ − πaαa)p) < 0. (A.34)

To solve for the thresholds vb and va, using u = va − vb, note that they solve

vb =
p

1− πsαs(va − vb)
, and (A.35)

va =
(1− δ)p− ca

πaαa − πsαs(va − vb)
. (A.36)

These are the same as (A.30) and (A.31). Using the exact same argument, it follows that vb is

the largest root of the cubic f2(x), lying past ca−(1−δ)p
1−πaαa

. Then using (A.32), we solve for vb.

In this case, however, we also have a patching population, with the patching threshold given by

vp =
cp−(ca−(1−δ)p)

πaαa
.

For this to be an equilibrium, the necessary and sufficient conditions are 0 < vb < va < vp < 1.

This tells us that all v ∈ [vp, 1] have the same preferences and will purchase (B,P ), all v ∈ [va, vp)

have the same preferences and will purchase (B,AP ), and all v ∈ [vb, va) have the same preferences

and will purchase (B,NP ). Finally, all v < vb have the same preferences and will not purchase in

equilibrium.

For vp < 1, the necessary and sufficient condition is cp + (1− δ)p < ca + πaαa.

For va < vp, it is equivalent to write f2

(
cp−(ca−(1−δ)p)

πaαa

)
> 0. Simplifying, this gives the

condition cp(πaαa)
2(−ca+ cp(1−πaαa)+ p(1− δ))+πsαs(−ca+ cp+ p(1− δ))2(ca− cp(1−πaαa)−

(1− δ − πaαa)p) < 0.

For vb < va, the necessary and sufficient condition reduces down to va > ca+δp
1−πaαa

. As in the

previous case, this condition isn’t necessary given (1− δ)p− ca < 0.

For 0 < vb, it is equivalent to have va > ca−p(1−δ)
1−πaαa

, which holds by construction of va.

A summary of the above necessary and sufficient conditions is given in (A.34). �

Next, for case (VII), in which there are no automated patching users while the lower tier in

unpatched and the upper tier is patched, i.e., 0 < vb < vp < 1, we have u = vp − vb. Following the

same steps as before, we prove the following claim related to the corresponding parameter region

in which case (VII) arises.

Claim 7 The equilibrium that corresponds to case (VII) arises if and only if the following condi-
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tions are satisfied:

ca > (1− δ − πaαa)p and c2p > cp − (1− cp − p)πsαs and

(1− πaαa)(ca − (1− δ − πaαa)p)
2 + πsαs(ca + δp)2(ca − cp(1− πaαa)− (1− δ − πaαa)p) ≥ 0 and{(
ca − (1− δ)p− cp(1− πaαa) ≥ 0

)
or(

ca − (1− δ)p− cp(1− πaαa) < 0 and cp(1− πaαa) + (1− δ)p > ca and

cp(πaαa)
2(−ca+cp(1−πaαa)+p(1−δ))+πsαs(−ca+cp+p(1−δ))2(ca−cp(1−πaαa)−(1−δ−πaαa)p) ≥ 0

)}
.

(A.37)

To solve for the thresholds vb and vp, using u = vp − vb, note that they solve

vb =
p

1− πsαs(vp − vb)
, and (A.38)

vp =
cp

πsαs(vp − vb)
. (A.39)

From (A.38), we have πsαs(vp − vb) = 1 − p
vb
, while from (A.39), we have πsαs(vp − vb) =

cp
vp
.

Equating these two expressions and solving for vp in terms of vb, we have

vp =
cpvb
vb − p

. (A.40)

Plugging this expression for vp into (A.38), we find that vb must be a zero of the cubic equation:

f3(x) , p2 + x2(1− cpπsαs + πsαsx)− px(2 + πsαsx). (A.41)

To find which root of the cubic vb must be, note that the cubic’s highest order term is πsαsx
3,

so lim
x→−∞

f3(x) = −∞ and lim
x→∞

f3(x) = ∞. We find f3(0) = p2 > 0, f3(p) = −cpπsαsp
2 < 0, and

f3(cp+p) = c2p > 0. Since vb−p > 0 in equilibrium, we have that vb is the largest root of the cubic,

lying past p. Then using (A.40), we solve for vp.

For this to be an equilibrium, the necessary and sufficient conditions are 0 < vb < vp < 1,

type v = vp prefers (B,P ) over (B,AP ), and type v = vb prefers (NB,NP ) to (B,AP ). Type

v = vp preferring (B,P ) over (B,AP ) ensures v > vp also prefer (B,P ) over (B,AP ), by (A.11).

Moreover, type v = vb preferring (NB,NP ) over (B,AP ) ensures v < vb do so too, by (A.12).

For vp < 1, a necessary and sufficient condition for this to hold is vb >
p

1−cp
. This is equivalent

to f3(
p

1−cp
) < 0. Using vb < cp + p and the parameter assumptions of the model, this simplifies to

c2p > cp − (1− cp − p)πsαs.

For vp > vb > 0, a necessary and sufficient condition is 0 < vb < cp + p, which is true by

construction of vb.

For type v = vp to prefer (B,P ) over (B,AP ), a necessary and sufficient condition is
cpvb
vb−p ≥

cp−(ca−(1−δ)p)
πaαa

. This simplifies to vb(ca− (1−δ)p−cp(1−πaαa)) ≥ p(ca− (1−δ)p−cp). This can be

broken down into three cases, depending on the sign of ca− (1−δ)p−cp(1−πaαa) (also considering
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the case when the factor is zero). When ca− (1− δ)p− cp(1−πaαa) = 0, the left side is 0 while the

right side is negative, so this inequality holds. If ca−(1−δ)p−cp(1−πaαa) > 0, then the inequality

becomes vb ≥ p
ca−(1−δ)p−cp

ca−(1−δ)p−cp(1−πaαa)
. But

ca−(1−δ)p−cp
ca−(1−δ)p−cp(1−πaαa)

< 1, and since vb > p by construction,

this inequality holds without further conditions. On the other hand, if ca−(1−δ)p−cp(1−πaαa) < 0,

then we need vb ≤ p
ca−(1−δ)p−cp

ca−(1−δ)p−cp(1−πaαa)
. So we need f3

(
p(ca−(1−δ)p−cp)

ca−(1−δ)p−cp(1−πaαa)

)
≥ 0. Omitting the

algebra, this simplifies to cp(1− πaαa) + (1 − δ)p > ca and cp(πaαa)
2(−ca + cp(1− πaαa) + p(1 −

δ)) + πsαs(−ca + cp + p(1− δ))2(ca − cp(1− πaαa)− (1− δ − πaαa)p) ≥ 0.

For v = vb to prefer (NB,NP ) to (B,AP ), a necessary and sufficient condition is vb ≤ δp+ca
1−πaαa

,

which becomes f3

(
δp+ca
1−πaαa

)
≥ 0. This simplifies to ca > (1−δ−πaαa)p and (1−πaαa)(ca−(1−δ−

πaαa)p)
2+πsαs(ca+ δp)2(ca− cp(1−πaαa)− (1− δ−πaαa)p) ≥ 0. The conditions are summarized

in (A.37). �

This completes the proof of the general consumer market equilibrium for the proprietary case. �

Proof of Lemma 3: Technically, we prove that there exists an α1 such that for αs > α1, p
∗ and

δ∗ are set so that

1. if ca < min [πaαa − cp, cp(1− πaαa)], then σ∗(v) is characterized by 0<va<vb<vp< 1 under

optimal pricing,

2. if |πaαa − cp| < ca < cp(1 − πaαa), then σ∗(v) is characterized by 0<vb<va<vp< 1 under

optimal pricing, and if

3. if ca > cp(1− πaαa), then σ∗(v) is characterized by 0<vb<vp< 1 under optimal pricing.

Suppose that 0<vb< 1. By part (IV) of Lemma A.2, we obtain vb = 1 − 1−p
πsαs

+ (1−p)p
(πsαs)2

+

O
(

1
(πsαs)3

)
, which upon substitution into (6) yields

Π(p, δ) =
1− 2p

πsαs
− p(2− 3p)

(πsαs)2
− p(2− (9− 8p)p)

(πsαs)3
+O

(
1

(πsαs)4

)
. (A.42)

Its unconstrained maximizer is given by

pN =
1

2
− 1

8πsαs
+

1

16(πsαs)2
+O

(
1

(πsαs)3

)
. (A.43)

Substituting (A.43) into (A.42), we obtain

ΠN =
1

4πsαs
− 1

8(πsαs)2
+O

(
1

(πsαs)3

)
. (A.44)

Suppose that 0<va<vb<vp< 1 is induced. By part (III) of Lemma A.2, we obtain va = δp+ca
1−πaαa

and vb =
cp−ca+(1−δ)p

πaαa
− c2pπaαa

(cp−ca+(1−δ)p)2πsαs
+O

(
1

(πsαs)2

)
, which upon substitution into (6) yields

Π(p, δ) = p

(
1 +

(ca − cp − (1− δ)p)(1− δ)

πaαa
− δ(ca + pδ)

1− πaαa

)
+

c2ppπaαa(1− δ)

ca − cp − (1− δ)p)2πsαs
+O

(
1

(πsαs)2

)
.

(A.45)
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Its unconstrained maximizers are given by

pA =
1− cp

2
+

2c2p(πaαa)
2(3(ca − cp) + πaαa)

(ca − cp − πaαa)3πsαs
+O

(
1

(πsαs)2

)
, and (A.46)

δA =
1− πaαa − ca

1− cp
−

4c2p(πaαa)
2(1− ca − πaαa)(3(ca − cp) + πaαa)

(1− cp)2(ca − cp − πaαa)3πsαs
+O

(
1

(πsαs)2

)
. (A.47)

Substituting (A.46) and (A.47) into (A.45), we obtain

ΠA =
1

4

(
1− 2cp +

(ca − cp)
2

πaαa
+

c2a
1− πaαa

)
+

2c2pπaαa(ca − cp + πaαa)

(ca − cp − πaαa)2πsαs
+O

(
1

(πsαs)2

)
. (A.48)

Suppose that 0<vb<va<vp< 1 is induced. By part (VI) of Lemma A.2, we obtain va =
ca+pδ
1−πaαa

+ p(ca−p(1−δ−πaαa))
(ca+pδ)2πsαs

+ O
(

1
(πsαs)2

)
, vb = ca+pδ

1−πaαa
− (ca−(1−δ)p)(ca−(1−δ−πaαa)p

(ca+pδ)2πsαs
+ O

(
1

(πsαs)2

)
,

and vp =
cp−(ca−(1−δ)p)

πaαa
, which upon substitution into (6) yields

Π(p, δ) =
p
(
ca + cp(−1 + δ) + p(−1 + 2δ) + πaαa +

δ(ca+pδ)
−1+πaαa

)
πaαa

+
cap(ca + p(−1 + δ + πaαa))

(ca + pδ)2πsαs
+O

(
1

(πsαs)2

)
.

(A.49)

Its unconstrained maximizers are given by

pB =
1− cp

2
+

ca(−1 + ca + 2cp + πaαa − 2cpπaαa)(ca + cp − cpπaαa)

(1 + ca − πaαa)3πsαs
+O

(
1

(πsαs)2

)
, and

(A.50)

δB =
1− ca − πaαa

1− cp
+

2ca(−1 + ca + 2cp + πaαa − 2cpπaαa)
(
c2a + (−1 + πaαa)

(
c2p + πaαa − 2cpπaαa

))
(1− cp)2(1 + ca − πaαa)3πsαs

+O

(
1

(πsαs)2

)
.

(A.51)

Substituting (A.50) and (A.51) into (A.49), we obtain

ΠB =
1

4

(
1− 2cp +

(ca − cp)
2

πaαa
+

c2a
1− πaαa

)
− ca(−1 + cp)(ca + cp − cpπaαa)

(1 + ca − πaαa)2πsαs
+O

(
1

(πsαs)2

)
.

(A.52)

Suppose that 0<vb<vp< 1 is induced. By part (VII) of Lemma A.2, we obtain vb = cp + p−
c2p

(cp+p)2πsαs
+O

(
1

(πsαs)2

)
, which upon substitution into (6) yields

Π(p, δ) = p(1− cp − p) +
c2pp

(cp + p)2πsαs
−

2c3pp
2

(cp + p)5(πsαs)2
+O

(
1

(πsαs)3

)
. (A.53)
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Its unconstrained maximizer is given by

pP =
1− cp

2
−

2c2p(1− 3cp)

(1 + cp)3πsαs
−

16c3p(−3 + 8cp − 5c2p + 8c3p)

(1 + cp)7(πsαs)2
+O

(
1

(πsαs)3

)
. (A.54)

Substituting (A.54) into (A.53), we obtain

ΠP =
1

4
(1− cp)

2 +
2(1− cp)c

2
p

(1 + cp)2πsαs
+O

(
1

(πsαs)2

)
. (A.55)

Finally, suppose that 0<va< 1 is induced in equilibrium. By part (I) of Lemma A.2, we obtain

va = δp+ca
1−πaαa

, which upon substitution into (6) yields

Πa =
(1− ca − πaαa)

2

4(1− πaαa)
. (A.56)

The unconstrained profits under 0<va< 1, 0<va<vb< 1, and 0<vb<va< 1 differ by O
(

1
(πsαs)

)
.

Using the case for 0<va< 1, we show below that all outcomes are dominated by one of the above

cases under the conditions of the lemma.

Comparing (A.44) with (A.48), (A.52), or (A.55), we find that (A.44) is dominated by the

other two profits when αs is sufficiently large (say, αs > α1, for some α1). Using (A.46) and

(A.47) with Lemma A.2, we find that, for sufficiently large αs (αs > α2, for some α2), the opti-

mal price of this case indeed induces the correct market structure of 0<va<vb<vp< 1 when ca <

min
[
πaαa

(
1− 1

2−πaαa

)
, πaαa − cp, cp(1− πaαa)

]
. We can simplify this since ca < πaαa

(
1− 1

2−πaαa

)
holds whenever ca < min [πaαa − cp, cp(1− πaαa)]. Then using (A.50) and (A.51) with Lemma A.2,

we find that, for sufficiently large αs (αs > α3, for some α3), the optimal price of this case indeed

induces the correct market structure when |πaαa− cp| < ca < cp(1−πaαa). Similarly, using (A.54)

with Lemma A.2, we find that, for sufficiently large αs (αs > α4, for some α4), the optimal price of

this case indeed induces the correct market structure when ca > cp − 1
2(1 + cp)πaαa. Let α1 be the

max of these α1, α2, and α3. Then for αs > α1, if ca > cp−πaαa, we have that (A.44) is dominated

by the other profits, at least one of which has its profit-maximizing solution inducing the market

structure it represents.

Comparing (A.48) with the other profits, we find that if its interior solution induces the

conjectured market structure of 0<va<vb<vp< 1, then it dominates the other profits when

αs > α1. Comparing (A.52) with the other profits, we find that if its interior solution in-

duces the conjectured market structure of 0<va<vb<vp< 1, then it dominates the other prof-

its when αs > α1. Comparing (A.55) with (A.48) and (A.52), we see that (A.55) never domi-

nates when either of the other two market structures can be induced with an interior solution.

Comparing it with the unconstrained maximal profit of 0<va< 1, 0<vb<vp< 1 has greater

profit when 2ca(1 − πaαa) > c2a + (1 − πaαa)(cp(2 − cp) − πaαa), which can be written as ca >

1 − πaαa − (1 − cp)
√
1− πaαa. This is also the condition that ensures 0<vb<vp< 1 has greater

profit than 0<vb<va< 1 and 0<va<vb< 1. Under this condition, (A.55) also beats the profit

at the boundary of 0<va<vb<vp< 1 and 0<vb<va<vp< 1. Since this boundary profit beats

any other boundary profit, it follows that ca > 1 − πaαa − (1 − cp)
√
1− πaαa is the only condi-

tion we need for 0<vb<vp< 1 to beat the profits at the boundaries between cases. Then since
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cp(1−πaαa) > max(cp− 1
2(1+cp)πaαa, 1−πaαa−(1−cp)

√
1− πaαa), it follows that ca ≥ cp(1−πaαa).

This is because it dominates the maximal profit of 0<va< 1 and any boundary case profits while

not being dominated by 0<va<vb<vp< 1 or 0<vb<va<vp< 1. Hence, 0<vb<vp< 1 is induced

in equilibrium. �

3 Proofs of Propositions

Proof of Proposition 1: We focus on the region in which all segments are represented under

optimal pricing in the base case. Specifically, for sufficiently high αs, by Lemma 2, we have that

p∗ is set so that if cp − πaαa < ca < 1 − πaαa − (1 − cp)
√
1− πaαa, then σ∗(v) is character-

ized by 0<vb<va<vp< 1 under optimal pricing. By Lemma 3, when patching rights are priced

under the same parameter region, there are two cases: either 0<va<vb<vp< 1 is induced or

0<vb<va<vp< 1 is induced. Specifically, p∗ and δ∗ are set so that

(i) if ca < min [πaαa − cp, cp(1− πaαa)], then σ∗(v) is characterized by 0<va<vb<vp< 1 under

optimal pricing, and

(ii) if |πaαa − cp| < ca < cp(1 − πaαa), then σ∗(v) is characterized by 0<vb<va<vp< 1 under

optimal pricing.

In either case, since cp(1− πaαa) > 1− πaαa − (1− cp)
√
1− πaαa using the assumptions that

0 < cp < 1 and 0 < πaαa < 1, we have that cp − πaαa < ca < 1 − πaαa − (1 − cp)
√
1− πaαa

is a subset of the union of the regions ca < min [πaαa − cp, cp(1− πaαa)] and |πaαa − cp| < ca <

cp(1 − πaαa). Moreover, the intersection of cp − πaαa < ca < 1 − πaαa − (1 − cp)
√
1− πaαa with

either ca < min [πaαa − cp, cp(1− πaαa)] or |πaαa − cp| < ca < cp(1− πaαa) is non-empty.

In the first case, the optimal profit in the base case when patching rights aren’t priced is

given by (A.6), and optimal profit when patching rights are priced is given by (A.48). The per-

centage increase in profit is given by
(1−πaαa)(ca−cp+πaαa)2

πaαa(1−ca−πaαa)2
+ O

(
1

πsαs

)
. Moreover, the size of the

unpatched population when patching rights arent priced is given by In the first case, the optimal

profit in the base case when patching rights aren’t priced is given by (A.6), and optimal profit

when patching rights are priced is given by (A.48). The percentage increase in profit is given by
(1−πaαa)(ca−cp+πaαa)2

πaαa(1−ca−πaαa)2
+ O

(
1

πsαs

)
. Moreover, the size of the unpatched population when patching

rights arent priced is given by

û(σ∗|patching rights not priced) =
πaαa(1− πaαa) + ca(2− πaαa)

(1 + ca − πaαa)πsαs
+O

(
1

(πsαs)2

)
, (A.57)

while it shrinks to

ũ1(σ
∗|patching rights priced) =

2cpπaαa

(cp − ca + πaαa)πsαs
+O

(
1

(πsαs)2

)
(A.58)

when patching rights are priced. That (A.58) is smaller than (A.57) follows from 0 < ca < cp < 1

and −1+ca+πaαa+
√
1−πaαa√

1−πaαa
< cp < πaαa − ca, which are conditions in this parameter region.

Similarly, in the second case, the optimal profit in the base case is again given by (A.6), and

optimal profit when patching rights are priced is given by (A.52). The percentage increase in profit
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is again
(1−πaαa)(ca−cp+πaαa)2

πaαa(1−ca−πaαa)2
+ O

(
1

πsαs

)
. Moreover, the size of the unpatched population when

patching rights arent priced is given by (A.57), while it shrinks to

ũ2(σ
∗|patching rights priced) =

ca + cp(1− πaαa)

(1 + ca − πaαa)πsαs
+O

(
1

(πsαs)2

)
(A.59)

when patching rights are priced. That (A.59) is smaller than (A.57) follows from 0 < ca < 1,

0 < πaαa < 1, and ca > cp − πaαa, which are conditions in this parameter region.

In either case, we have that pricing patching rights increases profits while reducing the size of

the unpatched population in equilibrium as compared to the base case when patching rights aren’t

priced. �

Proof of Proposition 2: Again, when patching rights are priced, there are two cases: either

0<va<vb<vp< 1 is induced or 0<vb<va<vp< 1 is induced in equilibrium. In either case, it

suffices to show that the price of the automated patching option is higher when patching rights are

priced than in the base case when automated patching costs are low enough.

In the first region, the price of the automated patching option when patching rights arent priced

is given in (A.5). Using (A.46) and (A.47), when patching rights are priced, the automated patching

option is priced at

δ∗p∗ =
1

2
(1− ca − πaαa) +O

(
1

(πsαs)2

)
. (A.60)

Comparing the two, we have that δ∗p∗ when patching rights are priced is greater than the price set

in the base case when ca < 1
3−2πaαa

− πaαa. The intersection of this with the parameter region of

this case is non-empty when πaαa < 1
2 .

The argument for the second case is similar and is omitted for brevity, and we find (for the

case when 0<vb<va<vp< 1 is induced in equilibrium) that δ∗p∗ is greater than the price of the

base case if ca <
(1−2cp)(1−πaαa)

5−4πaαa
. The intersection of this with the parameter region of this case is

non-empty also when πaαa < 1
2 . �

Proof of Proposition 3: Using Lemma 2, the first part of Proposition 3 has status quo pricing

inducing 0<vb<va<vp< 1 market structure wihile the second part of Proposition 3 has status

quo pricing inducing 0<vb<vp< 1. Using Lemma 3, both parts of Proposition 3 have the vendor

inducing either 0<va<vb<vp< 1 or 0<vb<va<vp< 1 under priced patching rights. Using the

definition of social welfare in 20 , we find that the social welfare under status quo pricing of the

first part of Proposition 3 is given by

WSQ1 =
1

8

(
3 + 2ca − 8cp +

4(ca − cp)
2

πaαa
+ πaαa +

3c2a
1− πaαa

)
+O

(
1

πsαs

)
, (A.61)

and the social welfare under priced patching rights is given by

WPP =
3

8

(
1− 2cp +

(ca − cp)
2

πaαa
+

c2a
1− πaαa

)
+O

(
1

πsαs

)
. (A.62)
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The difference is

WSQ1 −WPP =
(ca − cp + πaαa)

2

8πaαa
+O

(
1

πsαs

)
, (A.63)

establishing the first part of Proposition 3.

For the second half of Proposition 3, the social welfare under status quo pricing is given by

WSQ2 =
3

8
(1− cp)

2 +O

(
1

πsαs

)
. (A.64)

Comparing with A.62, we have that the difference is

WPP −WSQ2 =
3(ca − cp(1− πaαa))

2

8(πaαa(1− πaαa))
+O

(
1

πsαs

)
, (A.65)

establishing the second part of Proposition 3. �

4 Case: Open-Source Software

Lemma A.3 The consumer market equilibrium for an open-source software product made available

for free is given by the following:

(I) If either (i) πaαa>cp − ca and πsαs≤ cp, or (ii) πaαa≤ cp − ca and πsαs≤ ca + πaαa, then

0= vb<va= vp=1 ;

(II) If either (i) πaαa≥ 1 − ca/cp and cp<πsαs≤ 1/cp, or (ii) cp − ca<πaαa< 1 − ca/cp and

cp<πsαs≤ cp(πaαa)2

(cp−ca)2
, then 0= vb<va= vp< 1, where vp=

√
cp

πsαs
;

(III) If πaαa≥ 1 − ca/cp and πsαs> 1/cp, then 0<vb<va= vp< 1, where vb= cp − 1/πsαs and

vp= cp ;

(IV) If cp−ca<πaαa< 1−ca/cp and πsαs>
1−πaαa

ca
, then 0<vb<va<vp< 1, where vb=

ca
1−πaαa

−
1

πsαs
, va=

ca
1−πaαa

and vp=
cp−ca
πaαa

;

(V) If πaαa≤ cp − ca and πsαs>
1−πaαa

ca
, then 0<vb<va<vp=1, where vb=

ca
1−πaαa

− 1
πsαs

and

va=
ca

1−πaαa
;

(VI) If πaαa≤ cp − ca and ca + πaαa<πsαs≤ 1−πaαa
ca

, then 0= vb<va<vp=1, where

va=
πaαa+

√
(πaαa)2+4πsαsca
2πsαs

;

(VII) If cp − ca<πaαa< 1− ca/cp and
cp(πaαa)2

(cp−ca)2
<πsαs≤ 1−πaαa

ca
, then 0= vb<va<vp< 1, where

va=
πaαa+

√
(πaαa)2+4πsαsca
2πsαs

and vp=
cp−ca
πaαa

.

Proof of Lemma A.3: We will prove parts (I) and (IV) which are representative of the ar-

guments required. The remaining parts will be omitted due to similarity. For part (I), suppose

πsαs≤ cp is satisfied. This implies (B,NP ) ≻ (B,P ) for all v ∈V. Further, πaαa>cp − ca implies

πaαa+ ca>πsαs which ensures (B,NP ) ≻ (B,AP ) for all v ∈V. Because πsαs≤ cp< 1, by (A.10),

19



U(v, σ)≥ 0 for all v ∈V if σ(v)= (B,NP ). Second, πaαa≤ cp − ca and πsαs≤ ca + πaαa together

imply the same preferences, and the characterization directly follows.

Next, we consider part (IV). By (A.10), σ(v)= (B,P ) if and only if v≥ max
(
cp−ca
πaαa

,
cp

πsαsu
, cp

)
,

hence there exists a threshold vp ∈ (0, 1] such that for all v ∈V , σ∗(v)= (B,P ) if and only if

v≥ vp. Moreover, σ(v)∈{(B,P ), (B,NP ), (B,AP )} if and only if v≥ max
(
cp,

ca
1−πaαa

)
and v(1−

πsαsu)≥ 0. Thus, provided that u≤ 1/πsαs, there exists a v ∈ (0, 1] such that a consumer with

valuation v ∈V will purchase if and only if v≥ v. Lastly, (B,AP ) ≻ (B,NP ) if and only if

both u≥πaαa/πsαs and v≥ ca
πsαsu−πaαa

are satisfied. It follows that if πaαa/πsαs≤u≤ 1/πsαs,

then v= vb≤ va≤ vp. Together u≤ 1/πsαs and πaαa< 1 − ca/cp imply that vp=
cp−ca
πaαa

. Sup-

pose u< 1/πsαs. Then, vb=0, hence va=
πaαa+

√
(πaαa)2+4πsαsca
2πsαs

. But, u = va≥ 1/πsαs be-

cause πsαs>
1−πaαa

ca
which is a contradiction. Therefore, u=1/πsαs, from which it follows that

va=
ca

1−πaαa
and vb=

ca
1−πaαa

− 1
πsαs

. �

Lemma A.4 The consumer market equilibrium for an open-source software product under a tax τ

is given by the following: If τ ≤ ca, then

(I) If cp + τ − ca<πaαa< 1 − ca
cp+τ and (cp + τ − ca)

2(cp + τ − ca − cpπaαa − τπaαa)πsαs >

cp(πaαa)
2(cp+τ−ca−cpπaαa), then 0<vb<va<vp< 1, where vp =

cp+τ−ca
πaαa

, va = ca−τ
πsαsu−πaαa

,

and vb = τ
1−πsαsu

. If τ < ca, u ∈ (πaαa
πsαs

, 1
πsαs

) satisfies u(πsαsu − πaαa)(πsαsu − 1) =

caπsαsu− (ca − τ + τπaαa). If τ = ca, u = πaαa
πsαs

;

(II) If πaαa ≤ cp + τ − ca and (1 − ca − πaαa)πsαs> (πaαa + ca − τ)(1 − ca − πaαa + τ), then

0<vb<va< 1, where va = ca−τ
πsαsu−πaαa

and vb =
τ

1−πsαsu
. If τ < ca, u ∈ (πaαa

πsαs
, 1
πsαs

) satisfies

u(πsαsu− πaαa)(πsαsu− 1) = caπsαsu− (ca − τ + τπaαa). If τ = ca, u = πaαa
πsαs

;

(III) If either (i) πaαa ≥ 1− ca
cp+τ and (1−cp−τ)πsαs>cp(1−cp), or (ii) cp+τ −ca<πaαa< 1−

ca
cp+τ , cp(1− cp)< (1− cp − τ)πsαs, and (cp + τ − ca)

2(cp + τ − ca − cpπaαa − τπaαa)πsαs ≤
cp(πaαa)

2(cp + τ − ca − cpπaαa), then 0<vb<vp < 1, where vp =
cp

πsαsu
, vb =

τ
1−πsαsu

, and

u ∈ (0, 1
πsαs

) satisfies πsαsu
2(πsαsu− 1)= (cp + τ)πsαsu− cp ;

(IV) If either (i) πaαa ≤ cp+τ−ca and (1−πaαa−ca)πsαs ≤ (1+τ−πaαa−ca)(πaαa+ca−τ), or

(ii) πaαa > cp+ τ − ca and (1− cp− τ)πsαs ≤ cp(1− cp), then 0<vb< 1, where vb =
τ

1−πsαsu

and u =
1+πsαs−

√
(1+πsαs)2−4πsαs(1−τ)

2πsαs
.

If τ > ca, then

(I) If either (i) cp+τ−ca<πaαa ≤ (cacp+τ−ca)/τ and (πaαa−cp−τ+ca)πsαs>cp(πaαa−cp),

or (ii) 1 − ca(1 − cp)/τ < πaαa < 1 − ca/(cp + τ) and c2a((cp + τ)(1 − πaαa) − ca)πsαs >

(ca− τ(1−πaαa))
2(1−πaαa), then 0<va<vb<vp< 1, where va=

ca
1−πaαa

, vb =
τ−ca

πaαa−πsαsu
,

and vp =
cp

πsαsu
. u ∈ (0, πaαa

πsαs
) satisfies πsαsu

2(πsαsu−πaαa)=πsαs(cp+ τ − ca)u− cpπaαa ;

(II) If either (i) τ−ca < πaαa ≤ cp+τ−ca and (1−πaαa−ca)caπsαs> (ca−τ+τπaαa)(1−πaαa),

or (ii) cp+ τ − ca<πaαa< 1− ca(1−cp)
τ , (ca− τ + τπaαa)(1−πaαa) < (1−πaαa− ca)caπsαs,

and (πaαa− cp− τ + ca)πsαs≤ cp(πaαa− cp), then 0<va<vb< 1, where va = ca/(1−πaαa),

vb =
τ−ca

πaαa−πsαsu
, and u=

πaαa+πsαs−
√

(πaαa+πsαs)2−4πsαs(πaαa−τ+ca)

2πsαs
;
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(III) If either (i) 1− ca(1−cp)
τ <πaαa< 1− ca

cp+τ , cp(1− cp)< (1− cp − τ)πsαs, and c2a((cp + τ)(1−
πaαa)− ca)πsαs ≤ (τπaαa − τ + ca)

2(1− πaαa), or (ii) πaαa ≥ 1− ca
cp+τ and πsαs(1− cp −

τ)>cp(1− cp), then 0<vb<vp< 1, where vb =
τ

1−πsαsu
and vp =

cp
πsαsu

. u ∈ (0, 1
πsαs

) solves

πsαsu
2(πsαsu− 1)= (cp + τ)πsαsu− cp ;

(IV) If either (i) 1− ca/τ <πaαa ≤ 1− ca(1−cp)
τ and πsαsca(1− πaαa − ca) ≤ (1− πaαa)(ca − τ +

τπaαa), or (ii) πaαa > 1− ca(1−cp)
τ and πsαs(1− τ − cp) ≤ cp(1− cp), then 0<vb< 1, where

vb = 1− u and u =
1+πsαs−

√
(1+πsαs)2−4πsαs(1−τ)

2πsαs
;

(V) If πaαa≤ τ − ca, then 0<va< 1, where va=
ca

1−πaαa
and u=0 .

Note that the consumer market equilibrium structures of (III) and (IV) when τ ≤ ca are the same

as those when τ > ca.

Proof of Lemma A.4: The results can be derived as a special case of Lemma A.2 by setting

p = τ and δ = 0. One thing notable is that the consumer market equilibrium structures may change

depending on whether τ ≤ ca or not. �

Proof of Lemma 4: This follows from taking πsαs → ∞ in Lemma A.3. �

Proof of Lemma 5: Technically, we prove that there exists an α such that for αs > α, τ∗ is set

so that

(i) if cp − πaαa<ca<cp(1 − πaαa), then σ∗ is characterized by 0<vb<va<vp< 1 under the

optimal tax.

(ii) if (πaαa)2

1−πaαa
<ca≤ cp − πaαa, then σ∗ is characterized by 0<vb<va< 1 under the optimal tax.

(iii) if ca≤ cp−πaαa and ca≤ (πaαa)2

1−πaαa
, then σ∗ is characterized by 0<va<vb< 1 under the optimal

tax.

Suppose that 0<vb< 1. By Lemma A.4, we obtain vb =
−1+πsαs+

√
(1−πsαs)2+4τπsαs

2πsαs
. Substi-

tuting this into the social welfare function WN (τ) =

∫ 1

vb(τ)
v − (1− vb(τ))πsαsvdv for this case, we

find that the social welfare function is then given by

WN (τ) =
τ(1− τ)

πsαs
− τ(1− τ)(1− 3τ)

2(πsαs)2
+O

(
1

(πsαs)3

)
. (A.66)

The interior maximizing price is given by

τN =
1

2
− 3

16πsαs
− 3

64(πsαs)2
+O

(
1

(πsαs)3

)
. (A.67)

By substituting (A.67) into (A.66), we have that the social welfare in this case, when the solution

is interior, is given by

WN (τN ) =
1

4πsαs
− 1

16(πsαs)2
+O

(
1

(πsαs)3

)
. (A.68)
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On the other hand, suppose that 0<va<vb<vp< 1 is induced. By Lemma A.4, we obtain

va = ca
1−πaαa

, vb =
cp−ca+τ
πaαa

− c2pπaαa

(cp−ca+τ)2πsαs
+

2c3p(ca−τ)(πaαa)3

(ca−cp−τ)5(πsαs)2
+ O

(
1

(πsαs)3

)
, and vp =

cp−ca+τ
πaαa

+

cp(τ−ca)πaαa

(cp−ca+τ)2πsαs
− c2p(τ−ca)(cp+ca−τ)(πaαa)3

(cp−ca+τ)5(πsαs)2
+O

(
1

(πsαs)3

)
.

Substituting this into the social welfare function

WA(τ) =

∫ 1

va(τ)
vdv −

(∫ vb(τ)

va(τ)
ca + πaαavdv +

∫ vp(τ)

vb(τ)
(vp(τ)− vb(τ))πsαsvdv + cp(1− vp(τ))

)
,

we find that the social welfare function is then given by

WA(τ) =
1

2

(
1− 2cp +

(cp − ca)
2 − τ2

πaαa
+

c2a
1− πaαa

)
+

c2pτπaαa

(cp − ca + τ)2πsαs
−

c3p(cp − ca − 3τ)(ca − τ)(πaαa)
3

2(cp − ca + τ)5(πsαs)2
+O

(
1

(πsαs)3

)
. (A.69)

The interior maximizing price is given by

τA =
(cpπaαa)

2

(cp − ca)2πsαs
−

7c3p(πaαa)
4

2(cp − ca)4(πsαs)2
+O

(
1

(πsαs)3

)
. (A.70)

By substituting (A.70) into (A.69), we have that the social welfare in this case, when the solution

is interior, is given by

WA(τA) =
1

2

(
1− 2cp +

(cp − ca)
2

πaαa
+

c2a
1− πaαa

)
+

(cpπaαa)
3

2(cp − ca)3(πsαs)2
+O

(
1

(πsαs)3

)
. (A.71)

Next, suppose that 0<vb<va<vp< 1 is induced. By Lemma A.4, we obtain va = ca
1−πaαa

+
τ(ca−τ(1−πaαa))

c2aπsαs
+ τ(ca−τ)(1−πaαa)(ca−τ(1−πaαa))(ca−2τ(1−πaαa))

c5a(πsαs)2
+O

(
1

(πsαs)3

)
, vb =

ca
1−πaαa

− (ca−τ)(ca−(1−πaαa)τ
c2aπsαs

−
τ(ca−τ)(1−πaαa)(−2ca+2τ+(ca−2τ)πaαa)(ca−τ(1−πaαa))

c5a(πsαs)2
+O

(
1

(πsαs)3

)
, and vp =

cp−(ca−τ)
πaαa

. Again, substi-

tuting this into the social welfare function, which for this case is given byW (τ) =

∫ 1

vb(τ)
vdv −

(∫ va(τ)

vb(τ)
(va(τ)− vb(τ))πsαsvdv +

∫ vp(τ)

va(τ)
ca + πaαavdv + cp(1− vp(τ))

)
,

we find that the social welfare function is then given by

WB(τ) =
1

2

(
1− 2cp +

(cp − ca)
2 − τ2

πaαa
+

c2a
1− πaαa

)
+

τ(ca − τ(1− πaαa))

caπsαs
+
(ca − τ)τ(1− πaαa)(ca − τ(1− πaαa))(ca − 3τ(1− πaαa))

2c4a(πsαs)2
+O

(
1

(πsαs)2

)
.

(A.72)

The interior maximizing price is given by

τB =
πaαa

πsαs
+

πaαa(1− πaαa)(1− 4πaαa)

2ca(πsαs)2
+O

(
1

(πsαs)3

)
. (A.73)
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By substituting (A.73) into (A.72), we have that the social welfare in this case, when the solution

is interior, is given by

WB(τB) =
1

2

(
1− 2cp +

(cp − ca)
2

πaαa
+

c2a
1− πaαa

)
+

πaαa

2(πsαs)2
+O

(
1

(πsαs)3

)
. (A.74)

Next, suppose that 0<vb<vp< 1 is induced. By Lemma A.4, we obtain vb = cp + τ −
c2p

(cp+τ)2πsαs
+ O

(
1

(πsαs)2

)
and vp = cp + τ +

τcp
(cp+τ)2πsαs

+ O
(

1
(πsαs)2

)
. Again, substituting this

into the social welfare function, which for this case is given by

WP (τ) =

∫ 1

vb(τ)
vdv −

(∫ vp(τ)

vb(τ)
(vp(τ)− vb(τ))πsαsvdv + cp(1− vp(τ))

)

, we find that the social welfare function is then given by

WP (τ) =
1

2

(
(1− cp)

2 − τ2
)
+

c2pτ

(cp + τ)2πsαs
+O

(
1

(πsαs)2

)
. (A.75)

The interior maximizing price is given by

τP =
1

πsαs
+O

(
1

(πsαs)2

)
. (A.76)

By substituting (A.76) into (A.75), we have that the social welfare in this case, when the solution

is interior, is given by

WP (τP ) =
1

2
(1− cp)

2 +O

(
1

(πsαs)2

)
. (A.77)

Next, suppose that 0<va< 1 is induced in equilibrium. By Lemma A.4, we obtain va = ca
1−πaαa

.

Again, substituting this into the social welfare function, which for this case is given by W (τ) =∫ 1

va(τ)
vdv −

∫ 1

va(τ)
ca + πaαavdv, we find that the optimal social welfare function is then

Wa(τ) =
(1− ca − πaαa)

2

2(1− πaαa)
, (A.78)

which doesn’t depend on τ .

Next, suppose that 0<va<vb< 1 is induced in equilibrium. By Lemma A.4, we obtain va =
ca

1−πaαa
and vb =

πsαs−πaαa+
√

(πsαs−πaαa)2+4πsαs(τ−ca)

2πsαs
. Again, substituting this into the social

welfare function, which for this case is given by

Wab(τ) =

∫ 1

va(τ)
vdv −

(∫ vb(τ)

va(τ)
ca + πaαavdv +

∫ 1

vb(τ)
(1− vb(τ))πsαsvdv

)
,
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we find that the optimal social welfare function is then

Wab(τ) =
(1− ca − πaαa)

2

2(1− πaαa)
+
τ(ca − τ + πaαa)

πsαs
−(ca − τ)(ca − 3τ + πaαa)(ca − τ + πaαa)

2(πsαs)2
+O

(
1

(πsαs)3

)
.

(A.79)

The interior maximizing price is given by

τab =
1

2
(ca + πaαa)+

(ca − 3πaαa)(ca + πaαa)

16πsαs
+
(ca − πaαa)(3ca − πaαa)(ca + πaαa)

64(πsαs)2
+O

(
1

(πsαs)3

)
.

(A.80)

By substituting (A.80) into (A.79), we have that the social welfare in this case, when the solution

is interior, is given by

Wab(τab) =
(1− ca − πaαa)

2

2(1− πaαa)
+

(ca + πaαa)
2

4πsαs
+

(ca − πaαa)(ca + πaαa)
2

16(πsαs)2
+O

(
1

(πsαs)3

)
. (A.81)

Finally, suppose that 0<vb<va< 1 is induced in equilibrium. By Lemma A.4, we obtain

va = ca
1−πaαa

+ τ(ca−τ(1−πaαa))
c2aπsαs

+ τ(ca−τ)(1−πaαa)(ca−τ(1−πaαa))(ca−2τ(1−πaαa))
c5a(πsαs)2

+O
(

1
(πsαs)3

)
and vb =

ca
1−πaαa

− (ca−τ)(ca−τ(1−πaαa))
c2aπsαs

− τ(ca−τ)(1−πaαa)(−2ca+2τ+(ca−2τ)πaαa)(ca−τ(1−πaαa))
c5a(πsαs)2

+O
(

1
(πsαs)3

)
. Again,

substituting this into the social welfare function, which for this case is given by

Wba(τ) =

∫ 1

vb(τ)
vdv −

(∫ va(τ)

vb(τ)
(va(τ)− vb(τ))πsαsvdv +

∫ 1

va(τ)
ca + πaαavdv

)
,

we find that the optimal social welfare function is then

Wba(τ) =
(1− ca − πaαa)

2

2(1− πaαa)
+

τ(ca − τ(1− πaαa))

caπsαs
+

τ(ca − τ)(1− πaαa)(ca − τ(1− πaαa))(ca − 3τ(1− πaαa))

2c4a(πsαs)2
+O

(
1

(πsαs)2

)
. (A.82)

The interior maximizing price is given by

τba =
1

2

(
ca

1− πaαa

)
− 1− 3πaαa

16(1− πaαa)πsαs
− (2− πaαa)(1− 3πaαa)

(64ca(1− πaαa)(πsαs)2
+O

(
1

(πsαs)3

)
. (A.83)

By substituting (A.83) into (A.82), we have that the social welfare in this case, when the solution

is interior, is given by

Wba(τba) =
(1− ca − πaαa)

2

2(1− πaαa)
+

ca
4(1− πaαa)πsαs

− (1− 2πaαa

32(1− πaαa)(πsαs)2
+O

(
1

(πsαs)3

)
. (A.84)

To prove Lemma 5, we proceed as follows. We first focus on the case when 0<vb<va<vp< 1

is induced in equilibrium. We find the conditions under which the interior optimal price for this

case indeed induces the conjectured market structure. Further, we show that the induced welfare is

greater than the maximal welfare of the other cases (under their respective optimal taxes) when the

conditions specified in the lemma are met. We then proceed to the remaining cases of 0<vb<va< 1
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and 0<va<vb< 1 using the same steps.

Suppose that 0<vb<va<vp< 1 is induced in equilibrium. For the optimal tax of this case,

in (A.73), to induce this case, we need to have that (A.73) satisfies (I) of Lemma A.4 (when

τ ≤ ca) for sufficient high πsαs. Omitting the algebra, the condition under which the optimal tax

of 0<vb<va<vp< 1, given in (A.73), indeed induces the market structure 0<vb<va<vp< 1 is

given by

cp − πaαa < ca < cp(1− πaαa).

Next, we show that under the above conditions, the interior optimal welfare of 0<vb<va<vp< 1

dominates the interior optimal welfares (and possible boundary extrema) in all the other cases.

Just by comparing the expressions, we see that the interior optimal welfare of 0<vb<va<vp< 1

dominates the interior optimal welfares of all the cases except for possibly 0<va<vb<vp< 1.

Specifically, (A.74) is greater than (A.84), (A.81), (A.78), (A.77), and (A.68). To complete the

proof for this case, we next show that the interior solution for 0<va<vb<vp< 1 can’t induce

that market structure. To show that the interior solution for 0<va<vb<vp< 1 doesn’t induce

0<va<vb<vp< 1, note that from (I) of Lemma A.4 (when τ > ca), one of the conditions is

τ > ca. However, looking at (A.70), we see that for sufficiently high πsαs, we’ll have that τA < ca.

Therefore, the interior solution for 0<va<vb<vp< 1 can’t induce that market structure. In other

words, if, given the parameters, 0<va<vb<vp< 1 can be induced by some τ , then the maximal

welfare of 0<va<vb<vp< 1 occurs at a boundary point for that market structure. It follows that

(A.74) dominates the boundary between 0<va<vb<vp< 1 and any other market structures, since

it dominates the interior optimal welfares in the other structures. This proves part (i) of Lemma 5.

Next, suppose that 0<vb<va< 1 is induced in equilibrium. For the optimal tax of this case,

in (A.83), to induce this case, we need to have that (A.83) satisfies (II) of Lemma A.4 (when

τ ≤ ca) for sufficient high πsαs. Omitting the algebra, the condition under which the optimal tax

of 0<vb<va< 1, given in (A.83), indeed induces the market structure 0<vb<va< 1 is given by

πaαa < 1
2 and ca ≤ 2(cp−πaαa)(1−πaαa)

1−2πaαa
.

We show next that under the conditions specified in the lemma for this case, the interior optimal

welfare of 0<vb<va< 1 dominates the interior optimal welfares (and possible boundary extrema)

in all the other cases. Just by comparing the expressions, we see that the interior optimal welfare

of 0<vb<va< 1, given in (A.84), always dominates the interior optimal welfares of cases 0<va< 1

and 0 − vb − 1, given in (A.78) and (A.68) respectively. Moreover, when ca ≤ cp − πaαa, we’ll

have that the interior optimal welfare of 0<vb<va< 1 is greater than the interior optimal welfare

of 0 − vb − vp − 1, given in (A.77). We’ll now show that under the conditions specified for this

case, namely (πaαa)2

1−πaαa
< ca ≤ cp − πaαa, it will be the case that there’s no τ which can induce

either 0<vb<va<vp< 1 or 0<va<vb<vp< 1. Specifically, using part (I) of Lemma A.4 for when

τ ≤ ca, for the case 0<vb<va<vp< 1 to be induced for some τ when πsαs gets sufficiently big, we

need (1+ cp)(1− πaαa) > ca > cp − πaαa to hold. Similarly, using part (I) of Lemma A.4 for when

τ > ca, for the case 0<vb<va<vp< 1 to be induced for some τ when πsαs gets sufficiently big, we

also need ca > cp − πaαa. Therefore, when ca ≤ cp − πaαa (as specified in the lemma for this case),

it’ll be the case that no τ can induce either 0<vb<va<vp< 1 or 0<va<vb<vp< 1 in equilibrium.

Lastly, we need to compare the interior optimal welfare of 0<vb<va< 1 against the interior optimal

welfare of 0<va<vb< 1. Note that the conditions for the interior optimal tax of 0<va<vb< 1 to

indeed induce 0<va<vb< 1 are given by 2cp ≥ ca+πaαa and ca < πaαa. By comparing (A.84) and
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(A.81), we see that the interior optimal welfare of 0<vb<va< 1 dominates the interior optimal

welfare of 0<va<vb< 1 when ca ≥ (πaαa)2

1−πaαa
. Since (πaαa)2

1−πaαa
< πaαa and ca + πaαa > 1

2 (ca + πaαa)

for πaαa < 1
2 , it follows that we need to have ca ≥ (πaαa)2

1−πaαa
as a condition for 0<vb<va< 1 to be

induced in equilibrium. We note that πaαa < 1
2 must hold in order for (πaαa)2

1−πaαa
< ca ≤ cp − πaαa

to hold for some ca and cp, and
(πaαa)2

1−πaαa
< ca ≤ cp − πaαa is a subset of ca ≤ 2(cp−πaαa)(1−πaαa)

1−2πaαa
, so

that when the conditions of the lemma hold, 0<vb<va< 1 will be induced in equilibrium. This

completes the proof for this case.

Lastly, suppose that 0<va<vb< 1 is induced in equilibrium. For the optimal tax of this case,

in (A.80), to induce this case, we need to have that (A.80) satisfies (II) of Lemma A.4 (when

τ > ca) for sufficient high πsαs. Omitting the algebra, the conditions under which the optimal tax

of 0<va<vb< 1, given in (A.80), indeed induces the market structure 0<va<vb< 1 are given by

ca < πaαa and ca ≤ 2cp − πaαa.

We show next that under the conditions specified in the lemma for this case, the interior optimal

welfare of 0<va<vb< 1 dominates the interior optimal welfares (and possible boundary extrema)

in all the other cases. In the same way as the previous case, we have that the interior optimal welfare

of 0<va<vb< 1, given in (A.81), always dominates the interior optimal welfares of cases 0<va< 1

and 0<vb< 1, given in (A.78) and (A.68) respectively. Moreover, when ca ≤ cp − πaαa, we’ll have

that the interior optimal welfare of 0<va<vb< 1 is greater than the interior optimal welfare of

0−vb−vp−1, given in (A.77). For the same reason as in the previous case of 0<vb<va< 1, we have

that there’s no τ which can induce either 0<vb<va<vp< 1 or 0<va<vb<vp< 1. Therefore, when

ca ≤ cp−πaαa (as specified in the lemma for this case), it’ll be the case that no τ can induce either

0<vb<va<vp< 1 or 0<va<vb<vp< 1 in equilibrium. Lastly, we need to compare the interior

optimal welfare of 0<va<vb< 1 against the interior optimal welfare of 0<vb<va< 1. Again,

from the previous case, we have that the condition is ca < (πaαa)2

1−πaαa
. Note that when πaαa ≤ 1

2 ,

we have (πaαa)2

1−πaαa
< πaαa and when πaαa > 1

2 , we have cp − πaαa < πaαa. Therefore, ca < (πaαa)2

1−πaαa

and ca ≤ cp − πaαa imply ca < πaαa. Also, ca ≤ cp − πaαa implies ca ≤ 2cp − πaαa. From the

above, we have that the conditions ca < (πaαa)2

1−πaαa
and ca ≤ cp − πaαa imply that the optimal tax of

0<va<vb< 1 indeed induces that market structure in equilibrium. This completes the proof for

this case and concludes the lemma. �

5 Proofs of Propositions

Proof of Proposition 5: From Lemma A.3, it becomes clear that the absence of an automated

patching option is a special case characterized by:

(A) If πsαs≤ cp, then 0= vb<vp=1 ;

(B) If cp<πsαs≤ 1/cp, then 0= vb<vp< 1, where vp=
√

cp
πsαs

;

(C) If πsαs> 1/cp, then 0<vb<vp< 1, where vb= cp − 1/πsαs and vp= cp .

For part (i) of the proposition, suppose that cp<πsαs≤ cp(πaαa)2

(cp−ca)2
. By part (II) of Lemma A.3,

u=
√

cp
πsαs

. Part (B) above is also satisfied since
cp(πaαa)2

(cp−ca)2
< 1/cp, and hence ũ=

√
cp

πsαs
. Suppose

πsαs≤ cp. By part (I) of Lemma A.3 and part (A) above, u= ũ=1. For part (ii) of the proposition,
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by part (VII) of Lemma A.3, u=
πaαa+

√
(πaαa)2+4πsαsca
2πsαs

. Because cp<
cp(πaαa)2

(cp−ca)2
< 1

cp
< 1−πaαa

ca
, ũ

satisfies either ũ=
√

cp
πsαs

or ũ=1/πsαs. In either case, u< ũ. For part (iii) of the proposition, by

part (IV) of Lemma A.3 and part (C) above, u= ũ=1/πsαs, which completes the proof. �

Proof of Proposition 6: By Lemma 4 and Lemma 5, for sufficiently high πsαs, we have the

market structure 0<vb<va<vp< 1 being induced both under the status quo setting without the

tax as well as under the optimal tax when cp − πaαa < ca < cp(1 − πaαa). The social welfare

function of this case is given by (A.72). The welfare under the status quo case of no tax is given as

WB, Status Quo =
1

2

(
1− 2cp +

(ca − cp)
2

πaαa
+

c2a
1− πaαa

)
+O

(
1

(πsαs)

)
,

which is the limit of (A.72) as τ → 0. Comparing this expression with (A.74), the increase in social

welfare upon imposing the optimal tax is given by πaαa
2(πsαs)2

+O
(

1
(πsαs)3

)
.

Next, the size of the unpatched population for this market structure is given by u(σ∗|τ) =

va(τ)−vb(τ), and the size of the automated patching population is given by a(σ∗|τ) = vp(τ)−va(τ).

Taking the limit of these as τ → 0, the sizes of the unpatched and automated populations under

the status quo setting are given as uB = 1
πsαs

+ O
(

1
(πsαs)3

)
and aB =

cp−ca
πaαa

− ca
1−πaαa

+ 1
πsαs

+

1−πaαa(7−4πaαa)
2ca(πsαs)2

+ O
(

1
(πsαs)3

)
. Comparing these to their respective population sizes under the

optimal tax, τ = τB (given in (A.73)), we establish that the size of the unpatched population

decreases by πaαa(1−πaαa)
ca(πsαs)2

+O
(

1
(πsαs)3

)
and the size of the automated patching population increases

by 1
πsαs

+ 1−πaαa(7−4πaαa)
2ca(πsαs)2

+O
(

1
(πsαs)3

)
.

Under both the status quo setting and under taxed patching rights, the total security loss

from unpatched usage as a function of τ is given by SLB(τ) =
∫ va(τ)
vb(τ)

(va(τ)− vb(τ))πsαsvdv and

total patching cost from automated patching is given by ALB(τ) =
∫ vp(τ)
va(τ)

ca + πaαavdv. Then

the decrease in unpatched losses is given by SLB(0) − SLB(τB) =
2πaαa
(πsαs)2

+ O
(

1
(πsαs)3

)
, and the

increase in automated patching losses is given by ALB(τB)−ALB(0) =
cp

πsαs
+O

(
1

(πsαs)2

)
. �

Proof of Proposition 7: By Lemma 5, it can be seen that the magnitude of the optimal taxes

imposed on patching rights significantly increases as ca becomes less than or equal to cp − πaαa.

The structure of the remaining proof is similar to the proof of Proposition 6.

(i) By Lemma 4 and Lemma 5, for sufficiently high πsαs, we have the market structure 0<vb<va< 1

being induced both under status quo setting without tax as well as under the optimal tax

when (πaαa)2

1−πaαa
< ca ≤ cp − πaαa. The social welfare function of this case is given by (A.82).

The welfare under the status quo case of no tax is given as

Wba, Status Quo =
(1− ca − πaαa)

2

2(1− πaαa)
+O

(
1

(πsαs)3

)
, (A.85)

which is the limit of (A.82) as τ → 0. Comparing this expression with (A.84), the increase in

social welfare upon imposing the optimal tax is given by ca
4(1−πaαa)πsαs

+O
(

1
(πsαs)2

)
.
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Next, the size of the unpatched population for this market structure is given by u(σ∗|τ) =

va(τ) − vb(τ), and the size of the automated patching population is given by a(σ∗|τ) =

1 − va(τ). Taking the limit of these as τ → 0, the sizes of the unpatched and automated

populations under the status quo setting are given as uba = 1
πsαs

+ O
(

1
(πsαs)3

)
and aba =

1 − ca
1−πaαa

+ O
(

1
(πsαs)3

)
. Comparing these to their respective population sizes under the

optimal tax, τ = τba (given in (A.83)), we establish that the size of the unpatched population

decreases by 1
2πsαs

+O
(

1
(πsαs)2

)
and the size of the automated patching population decreases

by 1
4(1−πaαa)πsαs

+O
(

1
(πsαs)3

)
.

Under both the status quo setting and under taxed patching rights, the total security loss

from unpatched usage as a function of τ is given by SLba(τ) =
∫ va(τ)
vb(τ)

(va(τ)− vb(τ))πsαsvdv

and total patching cost from automated patching is given by ALba(τ) =
∫ 1
va(τ)

ca + πaαavdv.

Then the decrease in unpatched losses is given by SLba(0) − SLba(τba) = 3ca
4(1−πaαa)πsαs

+

O
(

1
(πsαs)2

)
, and the increase in automated patching losses is given by ALba(0)−ALba(τba) =

ca
4(1−πaαa)2πsαs

+O
(

1
(πsαs)2

)
.

(ii) Similarly, by Lemma 4 and Lemma 5, for sufficiently high πsαs and ca ≤ min
(
cp − πaαa,

(πaαa)2

1−πaαa

)
,

we have the market structure 0<vb<va< 1 being induced under status quo setting while

0<va<vb< 1 is induced under the optimal tax. The welfare under the status quo case of no

tax was found in the previous case. Comparing (A.85) with the welfare under the optimal tax

(A.81), we find that the increase in social welfare upon imposing the optimal tax is given by
(ca+πaαa)2

4πsαs
+O

(
1

(πsαs)2

)
.

Next, the size of the unpatched population for this market structure under the optimal tax is

given by u(σ∗|τ) = 1− vb(τ), and the size of the automated patching population is given by

a(σ∗|τ) = vb(τ)−va(τ). Evaluating these under the optimal tax, τ = τab (given in (A.80)), the

equilibrium sizes of the unpatched and automated patching populations under the optimal tax

are uab =
ca+πaαa
2πsαs

+O
(

1
(πsαs)2

)
and aab =

(
1− ca

1−πaαa

)
− ca+πaαa

2πsαs
+O

(
1

(πsαs)2

)
. From the pre-

vious case, the sizes of the unpatched and automated populations under the status quo setting

are given as uba = 1
πsαs

+O
(

1
(πsαs)3

)
and aba = 1− ca

1−πaαa
+O

(
1

(πsαs)3

)
. Comparing these,

we establish that the size of the unpatched population decreases by 2−ca−πaαa
2πsαs

+O
(

1
(πsαs)2

)
and the size of the automated patching population decreases by ca+πaαa

2πsαs
+O

(
1

(πsαs)2

)
under

the optimal tax.

Under taxed patching rights, the total security loss from unpatched usage as a function of

τ is given by SLab(τ) =
∫ 1
vb(τ)

(1− vb(τ))πsαsvdv and total patching cost from automated

patching is given by ALab(τ) =
∫ vb(τ)
va(τ)

ca + πaαavdv. Then the change in unpatched losses is

given by SLba(0)−SLab(τab) =
1

πsαs

(
ca

1−πaαa
− 1

4(ca + πaαa)
2
)
+O

(
1

(πsαs)2

)
, and the increase

in automated patching losses is given by ALba(0) − ALab(τab) = (ca+πaαa)2

2πsαs
+ O

(
1

(πsαs)2

)
.

Note that SLba(0) − SLab(τab) > 0 if ca >
2(1−

√
1−πaαa(1−πaαa))−πaαa(1−πaαa)

1−πaαa
and SLba(0) −

SLab(τab) ≤ 0 otherwise. �

28


